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Machine learning the spectral function of a hole in a quantum antiferromagnet
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Understanding charge motion in a background of interacting quantum spins is a fundamental problem in
quantum many-body physics. The most extensively studied model for this problem is the so-called t-t ′-t ′′-J
model, where the determination of the parameter t ′ in the context of cuprate superconductors is challenging.
Here we present a theoretical study of the spectral functions of a mobile hole in the t-t ′-t ′′-J model using two
machine-learning techniques: K-nearest neighbor regression (KNN) and a feed-forward neural network (FFNN).
We employ the self-consistent Born approximation to generate a dataset of about 1.3×105 spectral functions.
We show that, for the forward problem, both methods allow for the accurate and efficient prediction of spectral
functions, allowing, e.g., rapid searches through parameter space. Furthermore, we find that for the inverse
problem (inferring Hamiltonian parameters from spectra), the FFNN can, but the KNN cannot, accurately predict
the model parameters using merely the density of states. Our results suggest that it may be possible to use
deep-learning methods to predict materials parameters from experimentally measured spectral functions.
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I. INTRODUCTION

Understanding charge motion in a background of inter-
acting quantum spins has been considered an essential first
step in search for the mechanisms of superconductivity in
many unconventional materials ranging from cuprates [1–3]
to iron-based superconductors [4,5] and to twisted bilayer
graphene [6]. This topic has recently received renewed interest
thanks to recent novel experiments using ultracold atoms in
optical lattices, as they provide an essentially perfect realiza-
tion of the Fermi-Hubbard model, with site-resolved imaging
ability [7–15]. The most extensively studied model for this
problem is the so-called t-J-type model [16]. Its applica-
bility to cuprates was established by comparing the model
study results with various experiments, most notably angle-
resolved photoemission spectroscopy (ARPES), which can
specifically yield the spectral function of holes introduced by
photoemission of electrons [17–21]. The single-hole problem
corresponds to photoemission from an undoped Mott insu-
lator, such as Sr2CuO2Cl2 (a parent compound of cuprates),
where besides the nearest-neighbor hole hopping parameter
t , the second- and third-nearest-neighbor hopping param-
eters (t ′ and t ′′) are found to be necessary to reproduce
the correct quasiparticle dispersion relation E (k) [22–30].
While the need for longer hopping parameters is justified by
first-principles analysis of the in-crystal overlapping of elec-
tronic wave functions [27,31], it was uncovered [27,28] that
the determination of t ′ via fitting E (k) is inconclusive because
E (k) could be insensitive to t ′ varying from 0t to −0.3t
[see Fig. 1(a)]. This is a relevant problem since the value of t ′
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was shown to correlate with the superconducting transition
temperature at optimal doping [31] and affect phase compe-
tition [32] in the cuprates.

Another drawback of this traditional approach to predict-
ing model parameters is that E (k) is generally derived from
low-energy spectral peaks. However, it is difficult to resolve
E (k) when the quasiparticle spectral weight is small [33,34],
which is a common phenomenon in systems close to a non-
Fermi-liquid state, specifically near the high-energy edge of
the quasiparticle band in cuprates, resulting in large error bars
[see Fig. 1(a)]. It is thus highly desirable if the model param-
eters can be predicted by studying the full energy range of
the spectral functions directly [see Fig. 1(b)]. Extension from
fitting E (k) to treating the whole spectral function A(k, ω)
means a dramatic increase in the total amount of data that
needs to be processed. Here we use machine-learning (ML)
methods to address this outstanding problem in the field of
strongly correlated electron systems and high-temperature su-
perconductivity.

Machine-learning (ML) plays a huge role when catalogu-
ing or processing large amounts of data in general [35]. It is
uniquely able to identify important patterns and correlations
that might otherwise be missed, especially in large datasets.
Recently, it has emerged as an important computational tool
across disciplines in the physical sciences [36]. For exam-
ple, in particle physics, ML played an instrumental role in
the discovery of the Higgs boson [37]. In astrophysics, ML
techniques have been used to study photometric redshifts [38],
cluster membership of galaxies [39], and exoplanet transit de-
tection [40]. In materials and molecular science, ML is herald-
ing in a “second computational revolution” [41], helping
predict crystal structures [42], calculate material properties
[43–45], and accelerate first-principles calculations [46–50].
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FIG. 1. The t ′ dependence of (a) the quasiparticle band dispersion E (k) compared with experimental data (open circles), reproducing Fig. 4
in Ref. [27] with permission, and (b) the density of states A(ω) ∝ ∑

k A(k, ω), where the first broad peaks around the Fermi level (zero energy)
are almost identical for a wide range of t ′ but the other peaks could be used to resolve t ′.

In condensed-matter physics, ML was used to find phase
transition temperatures [51], catalog snapshots of strongly
correlated electronic states [10], infer fundamental physical
information from model systems [52], efficiently sample con-
figurations in many-body systems [53], predict phases of a
nonexactly solvable model when trained on data of a solvable
model [54], and predict impurity spectral functions [55].

In this paper, we show how ML can be used to predict and
understand spectral functions in the t-t ′-t ′′-J model by study-
ing both the forward problem of predicting spectral functions
from a given set of model parameters [55–57] {t , t ′, t ′′, J} and
the inverse problem of predicting the model parameters from
spectral functions. We point out that the forward problem is
in principle a matter of low-dimensional data interpolation,
because an arbitrary (e.g., homogeneous dense) grid of values
of the independent variables can be made in principle for
the forward problem. On the other hand, the inverse problem
of machine-learning spectral functions involves significantly
more generalization for two reasons: The first one is phys-
ically fundamental, namely, spectral functions must satisfy
certain sum rules. This means that, in general, no single
spectral function will fall fully inside the envelope created by
another two. It is thus highly likely that parts of a spectral
function stay outside all the spectral functions in the training
dataset [cf. Fig. 1(b)]. In addition, an arbitrary (e.g., homo-
geneous dense) grid of values of the independent variables
cannot be made for the inverse problem, because an arbitrarily
constructed spectral function that does not satisfy the required
sum rules has no physical meaning and no corresponding
model parameters. The second reason is that of dimension-
ality, as the inverse problem is a matter of high-dimensional
data generalization on the order of hundreds of inputs, as
opposed to three for the forward problem on a desirable grid.
We show that these intrinsic differences between the forward
and inverse problems make a classical ML algorithm and a
deep neural network ML method both reasonable choices for
the forward problem, but that their performances are quite
different for the inverse problem. Our results show that deep
neural networks could accurately handle such inverse prob-
lems.

The rest of this paper is organized as follows: Section II
describes the t-t ′-t ′′-J model, the ML methods used, and how

we obtain the needed dataset for training, validation, and
testing. Section III A presents a preliminary examination of
the data using principal component analysis (PCA), primarily
to help determine what linear correlations may be present
in the data. Section III B addresses the forward problem.
Section III C addresses the inverse problem of predicting the
model parameters t ′/t , t ′′/t , and J/t from spectral functions.
Section III D introduces an algorithm to find the value of t .
Finally, the results and discussions are summarized in Sec. IV.

II. METHODS

A. Hamiltonian and spectral functions

The t-t ′-t ′′-J model is described by the following Hamilto-
nian [21]:

H = −
⎛
⎝t

∑
〈i, j〉1,σ

+t ′ ∑
〈i, j〉2,σ

+t ′′ ∑
〈i, j〉3,σ

⎞
⎠(c̃†

iσ c̃ j,σ + H.c.)

+ J
∑
〈i, j〉1

Si · S j (1)

in the standard notation of the constrained fermionic oper-
ators: c̃†

iσ creates an electron with the spin index σ (either
↑ or ↓) at site i—with the constraint of no double occu-
pancy at any site—and c̃i,σ annihilates it. The spin operators
Si expressed in the matrix form are given by (Si )σσ ′ =
1
2

∑
σσ ′ c̃†

iσ τ̂σσ ′ c̃iσ ′ where τ̂ = (τ̂ x, τ̂ y, τ̂ z ) are the 2×2 Pauli
matrices. The angle brackets denote the first (〈i, j〉1), sec-
ond (〈i, j〉2), and third (〈i, j〉3) neighbor sites, respectively.
Thus, the J term describes the Heisenberg interaction between
nearest-neighboring quantum spins; the t , t ′, and t ′′ terms
describe the electron hopping to nearest, second-nearest, and
third-nearest sites, respectively.

The angle-resolved spectral function of a doped hole with
momentum k and energy ω is given by

A(k, ω) = − 1

π
ImG(k, ω), (2)

with the retarded Green’s function of the single hole being

G(k, ω) = lim
η→0+

〈�0|c̃†
kσ

1

ω + iη − H + E0
c̃kσ |�0〉, (3)
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where E0 and |�0〉 are the ground-state energy and wave
function of the undoped system, respectively, thus H |�0〉 =
E0|�0〉. Or equivalently,

A(k, ω) =
∑

ν

|〈ν|c̃kσ |�0〉|2δ(ω − Eν + E0), (4)

where |ν〉 is an eigenstate of H with one less electron and Eν

is the corresponding eigenenergy satisfying H |ν〉 = Eν |ν〉, as
the Dirac δ function δ(ω) is related to a Lorentzian by δ(ω) =
limη→0+ 1

π

η

ω2+η2 = limη→0+ − 1
π

Im 1
ω+iη .

The angle-integrated spectral function is given by

A(ω) = 1

N

∑
k

A(k, ω), (5)

where N = ∑
k 1 is the number of lattice sites. A(ω) is also

called the density of states (DOS). To obtain the DOS in
the normal procedure of theoretical calculations, one needs
to have first calculated out A(k, ω) using Eq. (4) for a dense
mesh of k points, and then sum the results over k using
Eq. (5). This implies that if the DOS can be accurately
predicted from known DOS data, a significant speedup in
evaluating the DOS can be achieved, e.g., a four-orders-
of-magnitude speedup compared with the normal procedure
using a (100×100)k mesh. More interestingly, we explore
whether the model Hamiltonian parameters can be accurately
predicted by machine-learning the DOS A(ω), which is rele-
vant to x-ray photoemission (XPS), or A(k, ω) with a fixed k,
which is relevant to laser-based ARPES where the k points
are most accessible near the zone center k = 0. The sum
rules governing the spectral functions are

∫ +∞
−∞ A(k, ω)dω =∫ +∞

−∞ A(ω)dω = 1.

B. Dataset generation

To obtain the dataset for use in our ML approach, we use
the self-consistent Born approximation (SCBA) to calculate
Green’s function of a hole in the t-t ′-t ′′-J model [3,58–66]
(see Appendix A for details). This approximation produces
quantitatively accurate results for the hole Green’s function
compared with exact diagonalization on small systems [67]
and Monte Carlo simulations [68].

We note that, although the Hamiltonian has four parame-
ters (t, t ′, t ′′, J ), all the data can be scaled with respect to t ,
e.g.,

A(k, ω) → A(k, aω)/a for t → at . (6)

where a is an arbitrary positive real number. Setting t as the
energy unit (t = 1) reduces the ML complexity by one di-
mension, which is of significant advantage in high-throughput
computation and big data management. Thus, the Green’s
functions are generated in a grid of t ′ ∈ [−0.5, 0.5], t ′′ ∈
[−0.5, 0.5], and J ∈ [0.2, 1.0], with each parameter sampled
on a 51-point uniform grid.

For each combination of t ′, t ′′, and J , the calculation
of the Green’s function G(k, ω) is performed by using a
128×128 mesh for the k points, ω ∈ [−6, 6] with the step
(i.e., energy resolution) being 0.01, and η = 0.01. Then,
η = 0.1 is used to broaden the resulting spiky DOS and a
uniform grid of 301ω points is used to sample the DOS.

Therefore, our dataset for the DOS consists of 513 = 132 651
pairs (x(i), y(i) ), with x(i) = (t ′, t ′′, J )(i) being the three-
dimensional vector representation of the ith model parameter
set and y(i) = (A(ω1), A(ω2), . . . , A(ω301))(i) the correspond-
ing 301-dimensional vector representation of the DOS. For
the forward problem, x(i) are the input and y(i) are the out-
put. For the inverse problem, the definitions of x(i) and y(i)

are switched, i.e., x(i) = (A(ω1), A(ω2), . . . , A(ω301))(i) and
y(i) = (t ′, t ′′, J )(i). We then randomly partitioned the dataset
into an 80-10-10 training T , validation V , and testing T
split. Here we use the computationally generated testing sets
to demonstrate without any ambiguity that the ML methods
work well for the present baseline problems.

C. Machine-learning methods

Training a ML model consists of an optimization procedure
in which a loss function encoding the difference between
predicted and ground-truth outputs is minimized on a training
set. In addition, a set of hyperparameters of the ML model
is tuned during cross validation to achieve high accuracy on
the validation set. Hyperparameters are untrained parameters
that include, but are not limited to, training time, network
architecture, and activation functions. Ultimately, final results
are presented on the testing set in order to provide an unbiased
estimate of model performance. Here we use the total mean
squared error (MSE) as the loss function. Given the training
set T = {(x(i), y(i) )} of size |T |, i.e., i = 1, 2, 3, . . . , |T |, for
an n-dimensional input vector x(i), the corresponding ground-
truth output is an m-dimensional vector y(i); if the ML model
predicts ŷ(i), then the individual MSE for that training example
is given by

L(i) = 1

m

m∑
j=1

∣∣ŷ(i)
j − y(i)

j

∣∣2
, (7)

and the total MSE score of the ML method is given by

L = 1

|T |
|T |∑
i=1

L(i). (8)

We now introduce the two ML methods used in this work:
K-nearest neighbors (KNN) and feed-forward neural network
(FFNN).

1. K-nearest neighbors

The KNN algorithm predicts an output via a nearest-
neighbor search [69]. With a training set T = {(x(i), y(i) )},
the KNN algorithm finds the closest k points in the input
parameter space. Then, a weighted average is taken over the
outputs of the k neighbors to predict the output ŷ of a new
input vector x by

ŷ =
∑

i∈NN(x)

w(i)(x)y(i), (9)

where NN(x) indicates the k nearest neighbors to x. Here the
weights w(i) is given by the inverse Euclidean distance [70]

w(i)(x) = |x − x(i)|−α

∑
j∈NN(x) |x − x( j)|−α

, i ∈ NN(x). (10)
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FIG. 2. A fully connected neural network, applied to the forward
problem of predicting a DOS given t ′, t ′′, J . The neural network takes
in a three-dimensional vector representing t ′, t ′′, J , and outputs a 301
dimensional vector representing the predicted DOS.

The optimized hyperparameters learned from training are
k = 9, α = 5 for the forward problem and k = 9, α = 3 for
the inverse problem.

2. Feed-forward neural network

A neural network is a ML algorithm that implements mul-
tiple repeated blocks of linear predictions followed by the
application of nonlinear functions. In this work, we use feed-
forward neural networks (FFNN), which consist of several
layers of artificial neurons and is defined by how the layers are
implemented and connected. Here we use a fully connected
FFNN in which neurons between adjacent layers are fully
connected [71]. For example, a three-layer FFNN is illustrated
in Fig. 2. The architecture of a fully connected FFNN is pri-
marily defined by the size of each layer, and the layer-by-layer
one-way activation is given by al = fl (Wlal−1 + bl ), where
al is the nl -dimensional vector output of the lth layer, fl is
the activation function, Wl is an nl×nl−1 matrix of weights
(nl is the number of neurons in layer l), and bl is a vector
of biases. Among them, Wl and bl are learned during training.
For both the forward and inverse problems, we train the neural
networks for a fixed length of time after which the validation
loss changes little over time for various different FFNN archi-
tectures (30 minutes here [72], cf. Fig. 9), using the rectified
linear unit (ReLU) activation function fl (x) = max(0, x) and
Adam optimizer [73].

III. RESULTS AND DISCUSSION

A. Principal component analysis

To analyze the quality of our dataset and visualize the
potential of applying ML algorithms to the data, we performed
the following principal component analysis (PCA) [74]
(see Appendix B for details).

1. Full density of states data

We proceed with PCA of the dataset in which y(i) =
(A(ω1), A(ω2), . . . , A(ω301))(i) and x(i) = (t ′, t ′′, J )(i), where
i = 1, 2, 3, . . . , 513. Following Eq. (B2), we show the pro-
jected (reduced-dimensional) data vector in Fig. 3, and color
each point (z1, z2)(i) by the value of t ′(i), t ′′(i), and J (i), re-
spectively, producing three subplots. All results look quite
structured (ear like) and the color gradients are smooth.
This suggests that the input parameters can be continuously

FIG. 3. Two-dimensional visualization of the DOS spectra pro-
jected into the first two principal components (z1, z2)(i). The color
maps of the three subplots are determined by the values of t ′, t ′′, and
J , respectively. The horizontal and vertical axes represent the first
and second principal components, respectively.

mapped to spectral functions, making ML algorithms well
suited for the forward problem. Furthermore, this suggests
that the inverse problem of mapping spectral functions to input
parameters is feasible.

2. Using the first peak of density of states

In comparison, the traditional method for predicting the
Hamiltonian parameters is to fit the quasiparticle band E (k)
derived from the low-energy peak of the spectral function
A(k, ω), resulting a difficulty in determining t ′ [27,28]. To
visualize this problem with PCA, we use the Lorentzian

f (x) = Aγ 2

(x − x0)2 + γ 2
(11)

to fit the first peak of every DOS spectrum considered in the
inverse problem, resulting in a feature dataset in which now
y(i) = (A, x0, γ )(i). Then, we redo PCA and show the color
maps of the first two principal components in Fig. 4. We see
that while the t ′′ and J plots have smooth gradients, the t ′ plot
contains much more scattering data, demonstrating the diffi-
culty in resolving t ′ by using only the first-peak information.

B. The forward problem

KNN. We first trained a KNN for the forward problem
(see Appendix C 1 for details) and found that with the opti-
mized hyperparameters k = 9 and α = 5, the KNN was able

FIG. 4. Two-dimensional visualization of the Lorentzian param-
eters (obtained from fitting the first peaks of the DOS spectra)
projected into the first two principal components (z1, z2)(i). The color
maps of the three subplots are determined by the values of t ′, t ′′, and
J , respectively.
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FIG. 5. Comparison of the KNN-predicted DOS and the ground
truth (the SCBA-generated DOS) for the worst performing data
points in the testing set.

to produce DOS that are almost visually identical to the SCBA
results. The worst percentiles of prediction for the testing set,
in terms of mean squared error score, are shown in Fig. 5. We
note that, even for the examples in the testing set where KNN
performs the worst, the KNN prediction is able to reproduce
the peak positions and widths almost perfectly, while also
performing quite well when reproducing the peak heights.

FFNN. We then applied a neural network for the same
task. We found that with optimized hyperparameters n =
(3, 170, 340, 510, 680, 850, 1020, 301), a batch size of 1024,
and an initial learning rate of 10−3 (see Appendix C 1 for
details), the neural network with six hidden layers was able
to outperform KNN by roughly a factor of six in terms of
MSE loss. As shown in Fig. 6, even for the worst examples in
the testing set, the neural network reproduces peak positions,
widths, and heights almost perfectly. For these low-percentile
testing examples, the neural network qualitatively appears to
reproduce the peak heights better than KNN, which is also

FIG. 6. Comparison of the neural-network-predicted DOS and
the ground truth (the SCBA-generated DOS) for the worst perform-
ing data points in the testing set.

manifested quantitatively in its improvement over KNN in
terms of MSE loss.

In addition to excellently reproducing the DOS, the ML
algorithms offer a great speedup in computation time over
SCBA. While generating the DOS from 130 k input combi-
nations using SCBA took over 30 hours [72], both KNN and
the neural network were able to generate the DOS from those
same input combinations in seconds: 7.4 seconds for KNN
and 1.2 seconds for FFNN; KNN and the neural network saw
a 1.5×104 and 9×104 speedup over SCBA in predicting the
DOS, respectively.

Since the forward problem is in principle a matter of low-
dimensional data interpolation and a homogeneous grid of
values of the parameters can be made in principle for the
forward problem, the above studies represent a traditional
data interpolation problem in a dense orthorhombic grid of
{t ′, t ′′, J}. This explains why both KNN and FFNN are good
for the forward problem. As for why FFNN outperforms
KNN, we note that in KNN, the output spectral intensity at
one energy point ωi is completely independent of the output
spectral intensity at another energy point ω j , i.e., the inter-
polation was done point-by-point in the ω grid. On the other
hand, in FFNN, neurons on the adjacent layers are fully con-
nected, which means correlations among different ω points
were utilized in the FFNN algorithm, rendering its better
performance.

C. The inverse problem

The inverse problem, which involves predicting the
model’s parameters from observable quantities, has impor-
tant experimental implications. Since ARPES experiments
produce the spectral function and the DOS, the final goal
of inverse modeling would be to predict the Hamiltonian
parameters from this available experimental data. To make
our DOS dataset more experimentally relevant, we shifted
every DOS with respect to the top of the quasiparticle valence
band [see Fig. 1(b)]. This better mimics experimental data,
where absolute energies are not measured, but are instead
found relative to the Fermi level [see Fig. 1(a)]. We also
limited the dataset to include only examples with t ′ < 0 and
t ′′ > 0, i.e., the hole-doped case (the case of t ′ > 0 and t ′′ > 0
corresponds to electron doping). As different DOS in our
dataset requires shifting of different amounts, this demands
an expansion of our energy window. As a result, we now
use a 354-point linear grid to sample the shifted DOS. The
input is x(i) = (A(ω1), A(ω2), . . . , A(ω354))(i) and the output
is y(i) = (t ′, t ′′, J )(i), where i = 1, 2, 3, . . . ,∼ 513/4.

KNN. We first use a KNN to predict the corresponding t ′,
t ′′, and J , given a DOS. With the trained hyperparameters k =
9 and α = 3, the results for the worst-percentile predictions
are displayed in Table I. We see that for worst percentiles,
a KNN is able to predict t ′′ and J quite accurately, but has
trouble with t ′. This means that the outstanding problem of
predicting t ′ likely cannot be resolved by this classic modeling
method.

FFNN. We then trained a FFNN for the same
task. We found that with the hyperparameters n =
(301, 256, 128, 64, 32, 3), batch size of 128, and a learning
rate of 10−3 (see Appendix C 2 for details), the neural network
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TABLE I. Examples of worst percentiles when predicting t ′, t ′′, and J with KNN and FFNN, given the DOS. The numbers in the parentheses
are ground truth values.

KNN Predicted FFNN Predicted

Percentile −t ′ t ′′ J −t ′ t ′′ J

0 0.072(0.02) 0.130(0.14) 0.235(0.232) 0.387(0.38) 0.497(0.50) 0.201(0.200)
1 0.050(0.02) 0.093(0.10) 0.565(0.552) 0.177(0.18) 0.402(0.40) 0.889(0.888)
2 0.235(0.26) 0.140(0.14) 0.657(0.664) 0.022(0.02) 0.201(0.20) 0.266(0.264)
3 0.045(0.02) 0.440(0.44) 0.520(0.520) 0.498(0.50) 0.481(0.48) 0.362(0.360)

is able to significantly outperform KNN, with the MSE being
67× better than that of KNN. As shown in Table I, even for
the worst examples in the test set, the neural network can
predict at least the first two significant figures. Thus, the
neural network offers an accurate approach to prediction of
material parameters.

We again highlight that since unlike the forward problem as
data interpolation in a low-dimensional homogeneous dense
grid, the inverse problem of machine-learning spectral func-
tions involves data generalization in a very high-dimensional
constrained input space. This key difference explains why
while both KNN and FFNN are good for the forward prob-
lem, their performances are quite different for the inverse
problem.

D. Inverse problem: Finding t

In our above analysis, we produced and analyzed DOS with
t being the energy unit, i.e., t = 1. However, ARPES experi-
ments produce DOS that are measured in terms of absolute
energy. We thus proceed to analyze the feasibility of obtaining
ground truth t (referred to as ttruth) from more experimentally
realistic DOS. To this end, we examine the following simula-
tion: We start with a SCBA-generated DOS with t = 1 from
our dataset, shifted with respect to the top of the valence band.
We then scale the DOS by using A(ω) → A(ωttruth )/ttruth, thus
producing an “experimental” DOS in units of absolute energy.

FIG. 7. The mean squared error when rescaling a mock “exper-
imental” DOS in units of tguess, and running FFNN to predict the
ground truth t ′, t ′′, and J .

The task is to find ttruth from this “experimental” DOS while
pretending that we do not know this ttruth.

We propose the following algorithm for this task: We
add to the ML methods presented in Sec. III C an outer-
most loop over various guesses of ttruth. Specifically, for each
tguess, we rescale the experimental DOS by using A(ω) →
A(ω/tguess)tguess, producing the DOS with tguess being the en-
ergy unit; thus, we arrive at the same inverse problem of
predicting t ′, t ′′, and J with t = 1 studied in Sec. III C. Then,
we resample the rescale DOS with the same 354 point energy
grid as for the previous inverse problem, using cubic spline
interpolation. After that, we run the trained neural network to
produce t ′, t ′′, and J from the rescaled DOS and calculate the
MSE.

The results of this procedure are shown in Fig. 7. We find
that this algorithm is able to predict ttruth very accurately, as
seen by the steep drop in the mean squared error when tguess =
ttruth. Adding such one outermost loop takes advantage of the
scalability of the spectral functions [Eq. (6)] and reduces the
dimensionality of the model parameter space from four to
three, a significant improvement in coping with the curse of
dimensionality in big-data ML research.

IV. SUMMARY

We have investigated the potential of ML algorithms for
understanding the spectral functions of a hole in the t-t ′-t ′′-J
model and found that ML algorithms are well suited for the
task. The analysis of the dataset of SCBA-generated spectral
functions demonstrates the presence of a continuous mapping
between the model parameters and the resulting DOS. Given
a set of the model parameters, we found that both KNN and
neural networks can produce almost visually identical DOS
as SCBA, with a speedup of as much as 9×104. We also
found that the deep-learning neural networks can predict t ,
t ′, t ′′, and J very accurately given a DOS. The difference in
the performances of KNN and neural networks for the for-
ward and inverse problems is ultimately due to the principles
that the forward problem is a matter of data interpolation
in a low-dimensional homogeneous dense grid, whereas the
inverse problem involves data generalization in a very high-
dimensional constrained input space. With such a speedup in
the calculation of DOS, as well as the ability to solve the
inverse problem, ML offers a potential tool to search for the
model parameters that produce desirable spectral functions.
The present method can be directly applied to other cases of
energy distribution curves (EDCs) such as A(k, ω) at constant
momentum or the cases of momentum distribution curves
(MDCs), which are the intensities as a function of momentum
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at constant energy [33]. Future work will focus on working
with experimental data, which are further complicated by
instrument resolution and irreducible noise.

The data generated and used in this study are openly avail-
able from the Zenodo database [75].
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APPENDIX A: THE SELF-CONSISTENT
BORN APPROXIMATION

SCBA uses noncrossing Feynman diagrams to calculate
Green’s function G(k, ω) used in Eqs. (2) and (3), which
describes the propagation of a particle in the lattice. The
self-consistent system of equations to be solved is

G(k, ω) = [G0(k, ω)−1 − �(k, ω)]−1, (A1)

�(k, ω) =
∑

q

|M(k, q)|2G(k − q, ω), (A2)

where �(k, ω) is the so-called self-energy, G0(k, ω) =
limη→0+ [ω + iη − εk]−1 is the bare Green’s function with
εk = 4t ′ cos kx cos ky + 2t ′′[cos(2kx ) + cos(2ky)] being the
bare dispersion relation of the hole quasiparticle, and
ωq = 2J (1 − γ 2

q )1/2 is the magnon energy dispersion. The
hole-magnon coupling function is M(k, q) = 4t (uqγk−q +
vqγk )/

√
N where uq = {[(1 − γ 2

q )−1/2 + 1]/2}1/2 and
vq = −sgn(γq){[(1 − γ 2

q )−1/2 − 1]/2}1/2 with γq = [cos(qx )
+ cos(qy)]/2.

To generate a high-quality dataset of spectral functions,
SCBA samples over a dense mesh for both the hole momen-
tum k and the magnon momentum q. The sizes of k and q
can be different while being commensurate, corresponding to
the application of twisted boundary conditions [76]. While
higher-density k and q sampling leads to higher-quality spec-
tral functions, they are also more computationally expensive.
After testing various combinations of k and q sampling den-
sities, we found that above sampling densities of a 128×128
lattice for k and a 32×32 lattice for q, the results converge.

APPENDIX B: PRINCIPAL COMPONENT ANALYSIS

Given the training set T = {(x(i), y(i) )} of size N where x(i)

is an n-dimensional vector and y(i) is a m-dimensional vector,
we begin with the m×N matrix Z = (y(1), y(2), . . . , y(N ) ) with
each column representing a y(i). The m rows of Z are then each
shifted so that the mean of every raw is zero; that is, the center

FIG. 8. Validation loss for the forward problem for different val-
ues of k and α.

of the data is translated to the origin of the m-dimensional
space, which does not change how the data points are posi-
tioned relative to each other. The m×m covariance matrix is
given by

CZ = 1

m
ZZT. (B1)

The principal components of CZ are just its normalized eigen-
vectors e j with j = 1, 2, 3, . . . , m, arranged according to their
corresponding eigenvalues (variance) in descending order. e1

is the direction in the m-dimensional space with the largest
variance in Z , e2 is the direction with the second largest
variance, and so on. One can use the eigenvalues to determine
the proportion of the variation that each principal component
accounts for. If e1 and e2 account for the vast majority of the
variation in the data, a two-dimensional (2D) graph, using
only e1 and e2 as the axes, would be a good approximation
of a unimaginable m-dimensional graph. The coordinates of
y(i) projected into the 2D subspace is given by

z(i) ≡ (z1, z2)(i) = (e1 · y(i), e2 · y(i) ). (B2)

Then, a 2D color map can be produced by coloring all the
z(i) points according to the value of an element in the vector
x(i), so we can obtain n such 2D color maps. Among them,
those appearing to be structured and smooth in the color
gradients suggesting that the corresponding input parameters
can be continuously mapped to spectral functions, making ML
algorithms well suited for the task. This also suggests that
the inverse problem of mapping spectral functions to input
parameters is feasible.

APPENDIX C: TOTAL MEAN SQUARED ERROR

1. Mean squared error for the forward problem

Hyperparameter tuning was performed by optimizing hy-
perparameters to reduce validation set error.

For KNN, we tested various values of α and k via grid
search. Figure 8 shows a plot of the validation mean squared
error for various values of k, and α, including the optimal
value α = 5 and k = 9.

For FFNN, we tuned hyperparameters with a combination
of hand tuning and grid search. The architecture of the neural
network n was of particular interest in hyperparameter tuning.
We tested a variety of architectures with different number of
layers, which “ramped” up to a different number of neurons in
the final hidden layer. Figure 9 shows a plot of the validation
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FIG. 9. Validation loss over time for various different FFNN
architectures, with bs = 1024, and lr = 10−3, for the forward
problem.

error over time for different architectures over a 30 minute
[72] time period after which the validation error changes little.

For the architecture design, we tested various “linear
ramps” which simply ramp from three input neurons to
the 301 output neurons linearly. For example, a linear-
ramp architecture with three hidden layers would have n =
(3, 77, 151, 225, 301). We found that, while these linear
ramps intuitively made more sense, they trained considerably
less efficiently than architectures which had more than 301
neurons in the hidden layers. We see in Fig. 10 that after
training for 30 minutes, even the best linear ramps perform
worse on the validation set than architectures which include
larger hidden layers.

Other hyperparameters include the batch size and the learn-
ing rate. The batch size (bs) is the size of a subset of T
fed to the neural network to perform a single gradient up-
date. One epoch of training completes after all the training
data have been fed through the network (in a randomized
order each time). The learning rate (lr) is the base step size
for tuning weights towards the optimization direction (along
gradient descent) and is scheduled to decrease by a factor
of two when no improvement is realized after 10 epochs.

FIG. 10. Validation loss for the forward problem for linear ramps
with different number of hidden layers. These are compared with
architectures that include more than 301 neurons in the hidden layers.

For the forward problem, we find optimized hyperparameters
n = (3, 170, 340, 510, 680, 850, 1020, 301), bs = 1024, and
lr = 10−3.

After optimizing hyperparameters using the validation set
for both KNN and FFNN, the following MSE results are
derived from the performance of the ML models on the testing
set: 4.71×10−5 for KNN and 7.24×10−6 for FFNN.

2. Mean squared error for the inverse problem

For KNN, we again used grid search to tune hyperparame-
ters.

For FFNN, while we found that an architecture of
n = (354, 256, 128, 64, 32, 3) together with bs = 128 and
lr = 10−3 after hyperparameter tuning, we note that several
architectures, which ramped down from 354 to 3 neurons,
performed similarly on the validation set.

After optimizing hyperparameters using the validation set
for both KNN and FFNN, the following MSE results are
derived from the performance of the ML models on the testing
set: 4.19×10−5 for KNN and 6.29×10−7 for FFNN.
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