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Numerically exact generalized Green’s function cluster expansions for electron-phonon problems
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We generalize the family of approximate momentum average methods to formulate a numerically exact,
convergent hierarchy of equations whose solution provides an efficient algorithm to compute the Green’s
function of a particle dressed by bosons suitable in the entire parameter regime. We use this approach to extract
ground-state properties and spectral functions. Our approximation-free framework, dubbed the generalized
Green’s function cluster expansion (GGCE), allows access to exact numerical results in the extreme adiabatic
limit, where many standard methods struggle or completely fail. We showcase the performance of the method,
specializing three important models of charge-boson coupling in solids and molecular complexes: the molecular
Holstein model, which describes coupling between charge density and local distortions, the Peierls model, which
describes modulation of charge hopping due to intersite distortions, and a more complex Holstein+Peierls system
with couplings to two different phonon modes, paradigmatic of charge-lattice interactions in organic crystals. The
GGCE serves as an efficient approach that can be systematically extended to different physical scenarios, thus
providing a tool to model the frequency dependence of dressed particles in realistic settings.
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I. INTRODUCTION

The interaction of a particle with its environment is central
to the study of many physical systems. One classic problem
of this type is that of the polaron, which describes a mobile
carrier dressed by bosonic fluctuations [1]. Originally pre-
dicted by Landau [2], expanded upon by Pekar [3,4], and
cemented into condensed matter canon by Lee, Low and
Pines [5], Fröhlich, Pelzer and Zienau [6,7], Feynman [8],
and Holstein [9,10], a polaron forms when a particle such as
an electron or hole moves in a deformable medium. The mo-
tion of the particle induces a local polarization cloud, which
is dragged along with the particle as it moves, renormaliz-
ing its effective mass and yielding a nonzero quasiparticle
weight. Polarons arise in a variety of physical contexts be-
yond that of electron-phonon systems [11], such as excitons
in photoexcited molecular crystals [12–15], hole-doped mag-
nets [16], light-matter systems [17–19], impurities embedded
in ultracold gases [20–23], and in other more exotic physical
settings [24–26].

Over the last two and a half decades, many (in principle)
exact numerical methods have been devised to study pola-
ronic problems. One can broadly classify these approaches
into two main categories: real- and imaginary-frequency
methods. Approaches in the former class include variational
exact diagonalization [27] and its variants [28,29], limited
[honon basis exact diagonalization [30], and matrix-product-
state techniques [31–34]. Methods in the latter class are
most prominently Monte Carlo methods, such as diagram-
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matic [35–37], path integral [38], and continuous-time [39]
Monte Carlo. While Monte Carlo techniques are well suited
for the study of finite-temperature systems over the com-
plete range of polaronic model parameters, they require
ill-conditioned analytic continuation to the real-frequency
axis to study dynamics [40]. In contrast, direct real-time meth-
ods face a daunting challenge in several parameter regimes,
including the so-called adiabatic limit, where the lattice re-
sponse is slow, as well as the strong-coupling limit, where a
large number of bosons is excited in the system and the size
of basis states becomes too large to efficiently manage.

In this paper, we introduce the generalized Green’s func-
tion cluster expansion (GGCE), a nonperturbative approach
that enables an exact, efficient numerical computation of
real-frequency Green’s functions of polaronic models even
in regimes challenging for related real-frequency approaches.
We restrict ourselves to the limiting case of a single carrier in
an otherwise unoccupied band [1,41], reserving an attempt to
formulate a cluster expansion approach for the real-frequency
properties of polaron models at finite concentrations [42] for
future work. In particular, we show that the GGCE provides
access to exact spectra in the portions of the adiabatic and
strong-coupling limits inaccessible to more standard vari-
ational exact diagonalization approaches, while converging
more rapidly in accessible regimes. Our method builds on the
momentum average (MA) approximation [43] proposed by
Berciu in 2006 [44], which has since been adapted to describe
realistic materials [45,46]. Our procedure is applicable to any
form of particle-boson coupling, and proceeds via efficient
generation of an equation of motion (EOM) in orders of the
spatial extent of bosonic clusters that arise in the dynamics.
We show that this approach variationally recovers the exact
infinite boson Hilbert space, provided that one converges the
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computation with respect to the cluster size, and we find
that this is achieved with a high level of efficiency when
compared against standard numerical approaches, even in the
adiabatic limit. In addition to providing access to quasiparticle
spectra over a wide frequency range, the GGCE comes with
several strengths. In particular, it is formulated in the infinite
system-size limit, and thus provides access to exact spectra
in the thermodynamic regime. It affords sufficient flexibility
that permits extensions to finite-ranged models at finite tem-
peratures and in higher dimensions, as well as to studies of
bipolarons and systems with different boundary conditions.
Additionally, it allows the study of dynamics of nonequilib-
rium initial states. Lastly, since existing linear algebra solvers
represent the only computational bottleneck in the approach,
the GGCE serves as an easy-to-implement, methodologically
unconstrained technique whose performance is limited only
by access to computational resources such as large-scale par-
allel computing or GPU technology.

Our paper is organized as follows. In Sec. II, we review
the foundations of the MA methods and devise a general-
ized formalism we use in the GGCE approach (Sec. II A).
We briefly discuss our computational implementation of the
method (Sec. II B) and highlight the relationship to and differ-
ences between our and other methods (Sec. II C). In Sec. III,
we demonstrate the power and scope of this implementation
and present a combination of numerically exact and qua-
siconverged results on the Holstein [9,10], Peierls [47–50],
and mixed-boson mode Holstein+Peierls (HP) [51] models.
Finally, in Sec. IV, we conclude and discuss possible future
work.

II. METHODOLOGY AND GENERAL CONSIDERATIONS

Consider a mobile particle (e.g., electron, hole, etc.) cou-
pled to a bosonic field

Ĥ =
∑

k

εkĉ†
kĉk +

∑
q

h̄�qb̂†
qb̂q

+
∑
k,q

g(k, q)ĉ†
k+qĉk(b̂†

−q + b̂q). (1)

Here, the carrier (boson) has dispersion εk (h̄�q) and the in-
teraction V̂ contains a vertex g(k, q) that, in general, depends
on both k and q. We use a compact notation

∑
k to imply

a discrete sum for a problem formulated on the lattice or a
d-dimensional integral ld

(2π )d

∫
dd k with ld the system volume

for a problem in the continuum.
The goal of our approach is to derive the EOM of the one-

electron Green’s function at zero temperature [1]:

G(k, ω) = 〈0|ĉkĜ(ω)ĉ†
k|0〉. (2)

For Hamiltonians of the form in Eq. (1), only the retarded
component of G(k, t ) contributes [44] and the propagator, in
real frequency, takes the form

Ĝ(ω) = [ω − Ĥ + iη]−1, (3)

where η = 0+ is an artificial broadening parameter. Repeated
application of Dyson’s equation,

Ĝ(ω) = Ĝ0(ω) + Ĝ(ω)V̂ Ĝ0(ω), (4)

with Ĥ0 = Ĥ − V̂ , yields an infinite hierarchy of equa-
tions [52], which we compute in the basis states |k, n〉 ,

labeling a delocalized state of the carrier with definite mo-
mentum quantum number k in the presence of n bosons in the
system. The first application of Dyson’s equation yields

G(k, ω) = G0(k, ω)[1 + 〈0|ĉkĜ(ω)V̂ ĉ†
k|0〉], (5)

and the second gives

〈0|ĉkĜ(ω)V̂ ĉ†
k|0〉 = 〈0|ĉkĜ(ω)V̂ Ĝ0(ω)V̂ ĉ†

k|0〉, (6)

where Ĝ0(ω) is the free particle propagator, and

Ĝ0(ω) |k, n〉 = G0(k, ω − nh̄�) |k, n〉 . (7)

Note this expansion can be indexed by the number of bosons
contained in the created states. A coupling V̂ that is linear
in boson operators either creates or annihilates a boson, thus
coupling states with n bosons to states with n ± 1 bosons.

A key development made by Berciu [44,53] is to recast the
EOM as a hierarchical expansion in orders of the spatial extent
of the bosonic cloud, M, rather than treating it as a direct
expansion in the number of bosons. Making use of the spatial
structure of the Green’s functions generated through repeated
application of Dyson’s identity allows one to derive a scheme
in which states corresponding to clouds larger than a certain
spatial extent M are excluded. To illustrate the idea, consider
the example of M = 2. At this level of approximation, only
states with bosons localized on single and first-neighbor sites
are retained in the hierarchy. Note that this imposes no restric-
tion on the distance between the carrier and the boson cloud.
We can view this approximation as a variational ansatz in the
space of Green’s functions in which one allows the carrier
anywhere in the system, but with bosons clustered in a cloud
of a maximum length M.

Before delving into the details, we provide a brief summary
of the convergence parameter space employed in our method.
As discussed above, M indexes the maximum extent (in units
of lattice sites) of the bosonic cloud contained in the set of
linear equations generated through repeated application of
Dyson’s identity. Any equation in the closure must have cloud
extent L such that 0 � L � M. The total number of bosons, N,

allowed in any cloud provides a second convergence parame-
ter. Similar to M, only equations with a total number of bosons
0 � nT � N are allowed. An example of the configuration of
a single auxiliary Green’s function (AGF), a Green’s function
describing the overlap between the single carrier and a con-
figuration of the single carrier + some boson distribution, is
given in Fig. 1. Converging M and N in numerical calculations
allows us to approach the infinite Hilbert space limit.

Below, we detail the approach we use to construct and
solve the linear system of equations in the EOM. Specifically,
in Sec. II A we derive a generalized expression for G(k, ω)
for arbitrary models. Then, in Sec. II B, we explain how to
systematically generate and solve the system of equations in
computer simulations. Finally, in Sec. II C, we discuss the
relation of the GGCE to other methods.

A. A generalized equation of motion

We now specialize our construction to the case of one-
dimensional (1D) lattice models described by Hamiltonians
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FIG. 1. Image of a L = 4, n = [2, 0, 0, 3] boson cloud (blue),
such that nT = 5, contained within a variational space specified by
a maximum cloud extent M = 5 and maximum number of bosons
N = 6. In this example, the constraint M = 5 spans sites i − 1 to
i + 4 so bosons can be created only on these sites (e.g., green circles)
and are not allowed outside of the M-site cloud (e.g., red circle).
N = 6 implies that states with two more bosons than those depicted
in the figure (blue circles) are omitted from the variational space.
Note that the carrier (not shown) is allowed to be anywhere on the
chain.

of the form

Ĥ = −t
∑
〈i j〉

ĉ†
i ĉ j + �

∑
i

b̂†
i b̂i + V̂ , (8)

where 〈i j〉 denotes nearest neighbors, for which numerical
results are available, t is the hopping amplitude, and � is
the frequency of dispersionless Einstein phonons. This 1D
Hamiltonian allows us to both benchmark GGCE against ex-
act numerics and to tackle regimes that are typically difficult
to study or inaccessible by related techniques even in the
well-studied 1D limit. In what follows, we set h̄ = 1 and the
lattice constant a = 1.

Beginning with Eq. (5), we derive a generalized EOM
(GEOM). Here the free-particle Green’s function is given by

G0(k, ω) = [ω − εk + iη]−1, (9)

with free particle dispersion εk = −2t cos k.
Consider a generalized representation of V̂ for models

that describe coupling between a carrier and a single bosonic
mode:

V̂ =
∑

(g,ψ,φ,ξ )

g
∑

i

ĉ†
i ĉi+ψ b̂ξ

i+φ. (10)

Here g is the coupling constant, ψ, φ ∈ Z encode the spatial
dependence of the coupling, and ξ = {−,+} labels bosonic
operators as either annihilation (b− ≡ b) or creation (b+ ≡
b†). Specifically, ψ is an integer that indexes the structure of
the carrier hopping in the coupling term and φ is an integer
that determines at which site relative to i (the site the fermion
hops to) a phonon is created. This generalized notation com-
pletely specifies V̂ for a given arbitrary finite-ranged model.
We present examples of such models in Appendix B. For
clarity, let us specialize to the Holstein model as an example:

V̂H = α
∑

i

ĉ†
i ĉi(b̂

†
i + b̂i ) (11)

can be represented in this notation as follows:

V̂H =α
∑

i

ĉ†
i ĉib̂

†
i +α

∑
i

ĉ†
i ĉib̂i ↔{(α, 0, 0,+), (α, 0, 0,−)}.

(12)

We allow for an arbitrary but finite number of interaction
terms, which need not be equal and can thus be used to model,
for example, a long-ranged coupling of a carrier to a bosonic
mode.

Using Eq. (5), we arrive at the GEOM for G(k, ω),

f0(0) = G0(k, ω)

[
1 +

∑
(g,ψ,φ,ξ )

geikRψ−φ f1(φ)

]
. (13)

Here, we have defined an AGF [44,54] given by

fn(δ) = N−1/2
∑

i

eikRi〈0|ĉkĜ(ω)ĉ†
i−δ b̂†n

i |0〉, (14)

where N is the number of lattice sites, Rm ≡ m, and fn(δ) ≡
fn(k, δ, ω). The AGFs can be thought of as higher-order
propagators of an electron in a spatial cloud composed of
multiple bosonic excitations. Further, we note the identity
f0(δ) = eikRδ G(k, ω), cf. Eq. (14).

It is now necessary to introduce additional notation for
describing how AGFs with greater than zero phonons couple.
Since bosons can, in general, be created anywhere on the
lattice, we define an occupation number vector n, which labels
the number of boson excitations starting from site i on a cloud
embedded within the infinite lattice,

n ≡ [n(i), n(i+1), ..., n(i+L−1)], (15)

where L � M is the length of n. This vector serves as a device
for labeling the bosonic Hilbert space in the following way:
n ↔ B†

i,n |0〉 , where B†
i,n ≡ b̂†n0

i b̂†n1
i+1 · · · b̂†nL−1

i+L−1. This allows us
to write a generalized version of Eq. (14), where n becomes a
vector:

fn(δ) = N−1/2
∑

i

eikRi〈0|ĉkĜ(ω)ĉ†
i−δB̂†

i,n|0〉. (16)

Upon Fourier transforming to reciprocal space and substitut-
ing Dyson’s equation, we obtain

fn(δ) = N−1
∑

i

eikRi
∑

q

e−iqRi−δ G0(q, ω − nT�)

×〈0|ĉkĜ(ω)V̂ ĉ†
qB̂†

i,n|0〉, (17)

where nT is the total number of bosons in the con-
figuration labeled by n. Here we used the fact that
when nT > 0, 〈0|ĉkĜ0(ω)ĉ†

qB̂†
i,n|0〉 = 0. Defining ω̃ ≡ ω −

nT� and adopting a combined real/momentum-space repre-
sentation, we have

fn(δ) = N−3/2
∑

i

eikRi
∑

q

e−iqRi−δ G0(q, ω̃)

×
∑

m

eiqRm〈0|ĉkĜ(ω)V̂ ĉ†
mB̂†

i,n|0〉. (18)

The goal of the procedure is to extract a relationship be-
tween AGFs with nT and nT ± 1 bosons. This depends on the
specific form of V̂ . It is thus advantageous to express V̂ as
defined in Eq. (10) to obtain

V̂ ĉ†
mB̂†

i,n |0〉 =
∑

(g,ψ,φ,ξ )

g
∑

j

ĉ†
j b̂

ξ
j+φB̂†

i,n |0〉 δm, j+ψ. (19)

Consider the case when ξ = −, implying the boson operator
removes a boson from site j + φ. Such a process can only
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have a nonzero contribution when a boson is removed from
an occupied site, and the domain of sites where b̂ j+φ can
act, in general, is j + φ − i ∈ �−

L = {0, 1, ..., L − 1}. In this
case, an extra prefactor appears due to the boson commutation
relations: b̂ j b̂

†m
i = b̂†m

i b̂ j + mδi j b̂
†m−1
i .

Until now, this derivation has been exact. We now impose a
limit on the maximum cloud extent, M, restricting the cluster
of sites where bosons can be created to at most M connected
sites, which are occupied with up to N bosons [55]. Thus,
when ξ = +, we have j + φ − i ∈ �+

L = {L − M, L − M +
1, ..., M − 1}. This restriction requires that we replace the
sum over j with a sum over the elements of the aforemen-
tioned set:

∑
j → ∑

γ∈�
ξ
L
.

To continue the derivation of the EOM, we introduce the
notation: B̂(ξ,γ )†

i,n |0〉 as the state B̂†
i,n |0〉 with an extra boson

created (ξ = +) or destroyed (ξ = −) on site i + γ within the
permitted variational space specified by the above restriction.
We omit states indexed by n whose nT > N from the space of
AGFs. Figure 1 demonstrates the variational space encoded in
our notation.

Summing over m and q in Eq. (18) produces the following
general form:

fn(δ) =
∑

(g,ψ,φ,ξ )

g
∑
γ∈�

ξ
L

n(ξ,γ )g0(δ + γ − φ + ψ, ω̃)

×N−1/2
∑

i

eikRi〈0|ĉkĜ(ω)ĉ†
i+γ−φB̂(ξ,γ )†

i,n |0〉, (20)

where n(ξ,γ ) is a prefactor associated with applying a boson
creation or annihilation operator: It is equal to 1 if ξ = +,

and is equal to the number of bosons on site i + γ (before a
boson is annihilated) if ξ = −.

Here, the free particle propagator in real space is given
by [56]

g0(δ, ω) = 1

N
∑

q

eiqRδ G0(q, ω)

= −i[−ωη/2t + i
√

1 − (ωη/2t )2]|δ|√
4t2 − ω2

η

,

ωη ≡ ω + iη. (21)

Observe that the second line in Eq. (20) is precisely an AGF
with different arguments and with nT → nT ± 1 bosons. In-
dexing a new AGF in the same manner as before, we have

fn(δ) =
∑

(g,ψ,φ,ξ )

g
∑
γ∈�

ξ
L

n(ξ,γ )

×g0(δ + γ − φ + ψ, ω̃) f (ξ,γ )
n (φ − γ ). (22)

Finally, we note that to abide by our labeling convention, cer-
tain reduction rules for the AGFs must be followed to produce
a valid closure. When removing or adding bosons, as in the
case fn → f (ξ,γ )

n , additional phase prefactors may appear. The
details of these rules are summarized in Appendix A (see also
Ref. [54] for a specific example).

B. Implementation

Together, Eqs. (13) and (22), along with the rules in
Appendix A, contain all information necessary to solve for
G(k, ω) for some chosen values of M, N. In this section, we
describe the computational approach for representing these
equations and solving them numerically.

Every possible combination of 1 � n � N bosons on 1 �
L � M sites will contribute to the calculation of G(k, ω). In
the first step, we systematically generate all combinations,
noting the only requirement that the first and last sites for
some cloud extent L must be at least singly occupied. This
amounts to symbolically constructing and storing representa-
tions of these objects, e.g.,

G = { f[0](δ), f[1](δ), f[1,1](δ), f[1,0,2](δ), ...}, (23)

such that all possible AGFs corresponding to a given config-
uration are generated. This can be thought of precisely as the
classic combinatorics problem of N indistinguishable balls in
M distinguishable bins, with the added constraint of requiring
at least one boson on each end of the cloud. In this way,
the total number of equations generated at this step (the total
number of elements in G, defined as |G|) has a straightforward
representation,

|G| = 1 +
M∑

L=1

N∑
n=1

⎧⎨
⎩

1 if L = 1 or n = 2(
L + n − 3

n − 2

)
otherwise

, (24)

where the one extra term reflects the first equation in the set
of equations (for G(k, ω)).

The second step consists of finding the values for δ each
function fn requires. Observing that the only δ dependence on
the right-hand side (RHS) of Eq. (22) is contained in g0 (and
importantly not in fn), we obtain the full closure of equations
by finding, for every fn, the values of δ prescribed by the
indices φ − γ on the RHS. This set is informally denoted as
S, e.g.,

S = { f[0](−1), f[0](0), f[1](−1), ...}. (25)

The terms contained in S are determined by a nontrivial func-
tion of M, N and depend on the model type. Every term in S
is simply a specific case of the left-hand side of Eq. (22). To
further clarify, the generalized equations in the set G leave δ

unfixed. The equations in the set S fix the allowed values of δ

based on the indices φ − γ . We note this does not constitute
an approximation to the EOM since the conditions that fix S
arise naturally within the hierarchy.

In the final step, we formulate this as an inhomogenous
linear system of equations and aim to find the solution for all
fn(δ) for some values of k, ω, M, N :

Af = b. (26)

Above, A is a matrix of coefficients which can be read from
the aforementioned equations, and b is proportional to the unit
vector and inherits the inhomogeneity of Eq. (13). This matrix
equation can be solved in one of two ways. The solution for
f can be obtained in a single step, which amounts to apply-
ing some direct solver to the |S| × |S| matrix A. However,
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this approach is either inefficient (using a sparse solver) or
intractable using a dense solver due to the large size of A
in cases such as the extreme adiabatic limit. Alternatively,
we find that a continued fraction approach using dense linear
algebra provides the optimal middle ground. Formally, the
continued fractions (here we suppress the M and N depen-
dence) Vn = An(k, ω)Vn−1 + Bn(k, ω)Vn+1, where An(k, ω)
and Bn(k, ω), are sparse matrices read off directly from the
EOM, and Vn is a vector of AGF’s with n � N bosons [53,54].
The matrix inversions required are much smaller in this ap-
proach, although there are �(N ) of them. We note that using
this more efficient approach, the calculations become chal-
lenging in our current implementation only around (M, N ) ∼
(10, 7), which produces ∼60 k equations. Adding one more
boson balloons the calculation to ∼150 k equations, which
are, in principle, within reach on large supercomputer archi-
tectures with sufficient memory capacity.

To approach the infinite phonon Hilbert space limit using
the continued fraction approach, we set VN+1 = 0, solving the
set of equations until we obtain G(k, ω), which corresponds
to V0. In the N → ∞ limit, this represents a sensible bound-
ary condition because it becomes energetically expensive to
generate clouds with larger than N bosons. In practice, we
treat N as a convergence parameter. All results shown in this
paper appear to be converged with respect to N to desirable
accuracy, unless otherwise stated.

C. Comparison to other methods

1. Comparison to related methods: Momentum average
and limited phonon basis exact diagonalization methods

The GGCE method combines advantages from the MA
and limited phonon basis exact diagonalization [30] (LPBED)
methods. In the MA approach, one makes an educated guess
of the value of M needed to obtain accurate results, in essence
employing a variational ansatz to the EOM. One then derives
the EOM in MA(M) analytically by hand and solves for
G(k, ω) numerically. LPBED is a more general ED analog of
MA and, in principle, also relies on a variational ansatz, albeit
one different from that of MA. Another successful version of
LPBED [57] discussed in the literature included clouds of size
M = 5 while allowing for two extra bosons anywhere on the
lattice even away from the cloud, but with a more restricted
total number of bosons [58].

We can roughly view MA and LPBED methods as specific
variational cases of the GGCE, which benefits from allowing
an arbitrary systematic choice of maximal cloud extent, M, in
the N → ∞ limit. The GGCE thus serves as a systematically
exact method which allows one to tailor resources based on
the underlying physics of the problem and is limited only by
computational resources. This provides the potential to access
regimes that are difficult to quantitatively describe by other
approaches, as we show below.

2. Comparison to variational exact diagonalization methods

Variational exact diagonalization (VED) [27] represents
another class of successful approaches to the polaron problem.
In VED, a variational Hilbert space is iteratively generated
by applying the off-diagonal parts of the Hamiltonian to a
reference state taken to be a Bloch state of an electron and
zero bosons in an infinite system. After Nh iterations, one

diagonalizes the Hamiltonian in the generated basis using
standard Lanczos techniques. Convergence with respect to Nh,
when possible, guarantees access to the exact ground state
(GS) and a small manifold of low-lying excited states [28].
There are at least two main differences between GGCE and
VED.

First, VED naturally imposes a restriction on the distance
between the electron and phonon configurations, which can be
at most ∼Nh sites (the precise value depends on the coupling),
while GGCE (and MA [54]) includes states with the electron
arbitrarily far away from the phonon clouds with no restric-
tion [this can be seen from the application of Ĝ0(ω) in the
EOM on states in AGFs with both an electron and phonons,
which moves the electron arbitrarily in the system without
regard to the location of the bosonic cloud, cf. Eq. (20)].
We note that VED is capable of describing the ground and
low-lying excited states in the weak- and lower-intermediate
regimes of coupling in the adiabatic limit [27]. We suspect
that the restriction on the distance between the electron and
the phonons in VED prohibits access to very strong couplings
in the adiabatic regime and to continuum states, since these
are generally delocalized states (see discussion below). In
contrast, as we show below, GGCE can tackle strong coupling
in the adiabatic regime.

Second, GGCE is formulated as an expansion in terms
of cloud sizes, and the computation must be converged with
respect to the cloud size, while VED imposes no restriction
on cloud sizes (a cloud in VED can extend over, at most,
∼Nh sites). For example, Nh = 11 implies clouds extended
over ∼ 10–11 sites (the exact number depends on the specific
model of the electron-boson coupling). Such a value of Nh

represents a rough lower bound within what is typically used
in VED in the intermediate adiabatic limit. These values imply
clouds with sizes that are much larger than those used in
GGCE in the current paper. This suggests that GGCE may
benefit in terms of efficiency by employing a smaller number
of states resulting from smaller clouds without compromising
accuracy. We believe this is a direct result of using an EOM
formulation of propagators, which ensures we keep only those
states generated in the dynamics and nothing further. Com-
paring, empirically, to Ref. [27], we note that the number of
states needed in GGCE appears to be two orders of magnitude
smaller than those in VED to achieve convergence in similar
parameter regimes.

Finally, we note that other variants of VED with extra
restrictions on the variational space have been used with great
success [28,59,60]. These, however, are either not formulated
in a general enough manner to be applied to a generic form
of electron-boson coupling [59] or involve further constraints
that, while variational, are not completely motivated physi-
cally, especially at strong couplings. In contrast, GGCE in
its current form follows naturally from the EOM and has no
restrictions beyond the cloud size, which is taken to the infi-
nite limit sequentially and in an efficient manner. In principle,
further restrictions of this type can be imposed in our GGCE,
but we do not explore this direction in the current paper.

The preliminary analysis presented here suggests that
GGCE may perform more favorably than related approaches,
at least in some parameter regimes and for some quantities.
Future work must be devoted to address these issues and
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compare the range of variational restricted-basis approaches
over the full range of parameter space for both GS energies
and spectral functions to fully access the utility and efficiency
of each approach.

III. RESULTS

In this section, we show results for a variety of 1D lattice
models described by the Hamiltonian defined by Eqs. (8)
and (10). This allows us to both benchmark GGCE against
exact numerics and to tackle regimes typically inaccessible
even in the well-studied 1D limit. In what follows, we charac-
terize the interaction strength via the dimensionless coupling
constant

λ = EGS(t = 0)/EGS(α = 0), (27)

which is the ratio of the GS energy in the atomic limit to that
in the free particle limit, and the adiabaticity ratio

� = �/W, (28)

where W = 4t is the carrier’s bandwidth.
While DMC and other quantum Monte Carlo methods may

access the GS in the adiabatic limit, dynamics are generally
difficult to obtain due to uncertainties associated with analyt-
ical continuation to the real-frequency axis. We showcase the
ability of the GGCE to simulate dynamics in the low-energy
regime for the Holstein [9,10] (H) and Peierls (P) (also known
as the Su-Schrieffer-Heeger [47]) models. Finally, we study
an experimentally motivated mixed HP model in which the
carrier couples to two different boson modes, one describes a
Holstein coupling and the other a Peierls coupling.

A. Holstein model

We first consider the prototypical Holstein model [9,10] for
which

V̂ = α
∑

i

ĉ†
i ĉi(b̂

†
i + b̂i ), λH ≡ α2/2�t . (29)

In Fig. 2, we compute the GS energy of a Holstein polaron
for � ∈ [0.0025, 2.5]. For �/t = 0.1 and 0.5, we compare
our results to those obtained via diagrammatic Monte Carlo
(DMC) [61]. Not only does GGCE converge to the exact result
for λ ∈ [0, 1.2] but it also yields slightly lower GS energies
than DMC in the strong-coupling regime λ � 1, although the
differences are likely due to statistical errors in DMC [62]. Im-
portantly, we are able to converge our results to the exact limit
even at extremely small �/t ∈ [0.01, 0.1] for intermediate
coupling strengths λ � 0.5, overcoming previous limitations
of MA methods. Beyond demonstrating GGCE’s ability to
simulate the adiabatic limit of massive bosons, our results
show a trend at intermediate couplings of the polaron bind-
ing energy |EGS(λ) − EGS(0)| that monotonically decreases
with �.

To demonstrate the ability of the GGCE method to con-
verge spectral functions and probe a broad range of physical
regimes, we present an array of spectral functions in Fig. 3.
These results cover all combinations of �/t ∈ {0.1, 0.5}, k ∈
{0, π/2, π}, and λ ∈ {0.2, 0.5, 0.8} and highlight the poten-
tial of the method. For example, in both cases treated in

FIG. 2. Ground-state energy EGS/t as a function of coupling
strength λ = α2/2�t for the Holstein model in adiabaticity limits
extending from anti (� 
 1) to extreme adiabatic (� � 1). Values
for �/t are shown in grey and GGCE results for �/t = 0.1 and
0.5 are compared to DMC data (symbols) obtained from Ref. [61].
Ground-state peak locations are converged with respect to N and
generally require ≈10 bosons at small couplings but up to ≈30 at
large couplings.

Fig. 3, we find excellent convergence of the GS peak lo-
cation and structure. The first excited state, which for the
values of λ considered, lies in the polaron + one boson con-
tinuum, proves more difficult to converge. Nonetheless, we
show reasonable convergence of this second peak for a wide
range of parameters. However, convergence becomes more
challenging for �/t = 0.5 at λ = 0.5, as seen in the second
column of Fig. 3(a), even when using extremely large cloud
sizes (M = 10), and as a result this peak is not sufficiently
converged. Difficulty in resolving excitations above EGS + �

is not surprising, since the nature of these continuum states
involves scattering between a delocalized electronic state and
an extended cloud of phonons that is generally not small. As
such, a sufficiently large cloud and therefore a bigger varia-
tional space is needed for convergence. Thus, with increasing
computational resources, convergence of the spectral function
proceeds naturally from low to high energy. This implies that
one can readily achieve convergence of lower-energy states
with much ease.

B. Peierls model

In Fig. 4, we present exact spectral functions of a polaron
in the Peierls model [47,49,50,63] defined by

V̂ = α
∑
〈i j〉

(ĉ†
i ĉ j + H.c.)(b̂†

i + b̂i − b̂†
j − b̂ j ),

λP = 2α2/�t (30)

for a variety of different dimensionless couplings. Although,
in principle, no more difficult than for the case of the
Holstein model, we reserve exploring the extreme-adiabatic
limit (�/t � 1) to future work and show results only for
�/t = 1.

The Peierls model exhibits distinct polaron physics when
compared with the Holstein model. A Peierls polaron ex-
hibits a sharp transition from a state with kGS = 0 to one
with kGS = 0 for λ > λc(�/t ) [64], while a Peierls bipo-
laron exhibits a significantly smaller mass than its Holstein
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FIG. 3. Spectral function A(k, ω) at k = 0, π/2 and π for the Holstein model in (a) the mildly adiatabic (�/t = 0.5) and (b) adiabatic
limits (�/t = 0.1), for dimensionless couplings λ = 0.2, 0.5, and 0.8. In this figure, we use η = 0.005. Various values of (M, N ) are shown
in the legend. Specifically, the gradient from red to black shows convergence with respect to M for fixed N. We demonstrate convergence with
respect to N via the blue line, which shows results that use the largest used M, but with one less boson than the largest-used N. The onset of
the continuum is shown in shaded gray, and is defined as EGS + �, where EGS is the polaron ground-state energy.

counterpart [65] and can exhibit transitions under certain con-
ditions [66]. We observe the transition to a band minimum at
a finite wave vector in Fig. 4 as λ changes from λ = 0.8 to
λ = 1, consistent with Ref. [64]. Importantly, we are able to
resolve the spectrum above the GS within sufficient accuracy.
The excited states of this model play an important role in
the presence of other perturbations, as will become apparent
next.

C. Mixed-boson mode Holstein + Peierls model

We now consider a realistic model applicable to organic
crystals, molecular complexes, etc., in which the charge car-

rier couples to both Holstein and Peierls phonon modes, each
with its own frequency [51,67–69]. The Hamiltonian is given
by

Ĥ = −t
∑
〈i j〉

ĉ†
i ĉ j + �H

∑
i

ĥ†
i ĥi + �P

∑
i

p̂†
i p̂i

+αH

∑
i

ĉ†
i ĉi(ĥ

†
i + ĥi )

+αP

∑
〈i j〉

(ĉ†
i ĉ j + H.c.)( p̂†

i + p̂i − p̂†
j − p̂ j ), (31)

where ĥi ≡ b̂H
i , p̂i ≡ b̂P

i and the Holstein and Peierls boson
operators act on different boson Hilbert spaces. We note that
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FIG. 4. Spectral function A(k, ω) (scaled to a maximum of 1) of the Peierls model for �/t = 1, η = 0.05, and various values of the
dimensionless coupling strength, λ. M = 5 and N = 10 used here are sufficient for convergence of the bands on the scale of the plot. It is
worth noting that fine structures in states above the lowest energy band can be resolved on a finer grid and smaller value of η, although the
intensity of these states is at most roughly an order of magnitude smaller than that of the lowest energy band.

the combinatorics of multiphonon models require vastly more
resources than single mode cases. Here, λH = α2

H/2�Ht and
λP = 2α2

P/�Pt , as before.
First, we detail the differences between this HP model

and that presented in Ref. [70]. The latter model repre-
sents a toy model of a carrier coupled to one boson type,
with two coupling contributions: diagonal (Holstein) and
off-diagonal (Peierls). Computations for this type of model
possess the same scaling complexity as that for H or P mod-
els, making it much easier to converge. However, a realistic
calculation requires modeling couplings to multiple phonon
modes, typically of vastly different energies, characteristic
of experimental systems. A straightforward generalization
of our implementation allows us to treat the boson modes
as explicitly distinguishable, even when �P = �H. We sim-
ply introduce two types of bosonic clouds, one for Holstein
bosons with MH and one for Peierls bosons with MP. These
can overlap, and we thus need an extra variational parameter
to constrain the absolute extent, A, over which the combined
clouds extend. We detail this construction in Appendix C.
This approach allows us to explore this more experimentally
relevant model. As previously mentioned, this comes with the
downside of increased computational complexity. However,
as we show below, we are able to semiquantitatively con-
verge the lowest-energy band for reasonably large couplings
and, with modest computational resources, we resolve the
spectrum in the experimentally relevant regime (see Fig. 5),
�P < �H, as well as in a hypothetical scenario with the fre-
quencies reversed. This requires modest choices of MH, MP,
and A. In Fig. 5, in the more experimentally relevant case,
with �H/t = 2.5 and �P/t = 0.5, we see a non-negligible
bandwidth and thus significant P-like character, an important
observation for experiment. In our simulations of this model,
we also find interesting behavior in the second peak in the
spectrum involving a minimum away from k = 0 (not shown),
which we leave to a future detailed analysis.

We quantify the GS convergence as a function of the
individual maximum cloud extents MH, MP, the absolute
cloud extent A, and maximum number of bosons in the
variational space, NH, NP, in Fig. 6. This analysis suggests that
an increase of computational resources, within reach on large
computers, will permit complete convergence.

IV. CONCLUSIONS

We have presented an exact, general approach to solving
the EOM of a Green’s function of a particle dressed by bosons,
suitable for treating difficult regimes such as the adiabatic
limit, and have demonstrated the power of the approach by
calculating the polaron GS and spectral functions in coupling
regimes ranging from weak to strong, and adiabaticity limits
ranging from extreme antiadiabatic to extreme adiabatic. We
note that at large couplings, the GGCE achieves GS energies
in agreement with DMC (Fig. 2), without the introduction of
stochastic error. Exact simulated spectra for � � 1 are, in
general, difficult to achieve with Monte Carlo methods due
to the reliance on analytic continuation, and inaccessible to
most Exact Diagonalization methods due to the large basis
size needed for convergence.

We emphasize the success achieved by the MA method
in characterizing polarons and bipolarons in various systems
under different physical conditions of experimental relevance.
In most of these cases, verification of the accuracy of the
method against an exact approach was needed to justify a

FIG. 5. Spectral function A(k, ω) (scaled to a maximum of 1) of
the mixed-boson mode Holstein+Peierls model for various values of
�H and �P, λH = λP = 1, t = 1, and η = 0.05. For these calcu-
lations, we use MH = MP = 3, and a maximum total cloud length,
or absolute extent, A = 3 (see Appendix C), and NH = NP = 5, for
which semiquantitive convergence is achieved.
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FIG. 6. Convergence of the energy of the ground-state polaron
band, EP(k), for parameters shown in Fig. 5 against combinations of
MH, MP, A, NH, and NP.

posteriori its utility and potential in limits where exact numer-
ics are difficult to obtain, e.g., in higher dimensional systems.
The GGCE method systematically makes use of the MA hi-
erarchy, resulting in an exact yet efficient approach, and a
physically motivated expansion in orders of the boson cluster
size, thus expanding the horizon of possibilities in characteriz-
ing dressed quasiparticles in previously challenging regimes.
Finally, the GGCE computational framework is well-suited
for future practical extensions, including higher-dimensional
systems, finite-temperature studies, the computation of ob-
servables connected to higher-order Green’s functions, such as
optical spectra and polaron mobilities [71], as well as studies
of the dynamics of bipolarons [72], and in other contexts we
plan to address in future work.
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APPENDIX A: REDUCTION RULES FOR AGFS

In this Appendix, we detail the reduction rules the AGFs
follow to produce a valid EOM.

Annihilating or creating a boson to the right of the last
occupied site does not come with any additional rule for
reindexing:

f[n,n′,...,n′′,0,...,0,1](δ) b̂→ f[n,n′,...,n′′,0,...,0](δ) = f[n,n′,...,n′′](δ),

(A1)

f[n,n′,...,n′′](δ) b̂†→ f[n,n′,...,n′′,0,...,0,1](δ) = f[n,n′,...,n′′,0,...,0,1](δ),

(A2)

where here n, n′′ > 0.

However, when creating or annihilating a boson to the left
of the first occupied site on the chain, we must reindex the
state such that the label i always references the first occupied
site:

f[1,0,...,0,n,n′,...,n′′](δ) b̂→ f[0,...,0,n,n′,...,n′′](δ)

→ e−ikRz f[n,n′,...,n′′](δ + z), (A3)

f[n,n′,...,n′′](δ) b̂†→ f[1,0,...,0,n,n′,...,n′′](δ)

→ eikRz f[1,0,...,0,n,n′,...,n′′](δ − z), (A4)

where z is the number of shifted sites i → i ± 1 → i ± 2, ...

in the phase incurred.

APPENDIX B: EXAMPLES OF THE GENERALIZED
NOTATION USED IN EQ. (10)

In this paper, we considered H, P, and HP models, each
of which have different carrier-boson couplings, V̂ . Within
the framework of the GGCE, these differences amount to
a simple change in input parameters. The fully expanded
coupling terms V̂ and their representation in terms of the
notation defined in Eq. (10) are shown here. We present the
three models used and reference the derivation as performed
in Sec. II. First, recall that the vectors which represent the
coupling are notated as (g, ψ, φ, ξ ).
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In the H model, this notation translates to

V̂H = α
∑

i

ĉ†
i ĉib̂

†
i︸ ︷︷ ︸

(α,0,0,+)

+α
∑

i

ĉ†
i ĉib̂i︸ ︷︷ ︸

(α,0,0,−)

. (B1)

In the P model, we have

V̂P = α
∑

i

ĉ†
i ĉi+1b̂†

i︸ ︷︷ ︸
(α,1,0,+)

+α
∑

i

ĉ†
i ĉi+1b̂i︸ ︷︷ ︸

(α,1,0,−)

−α
∑

i

ĉ†
i ĉi+1b̂†

i+1︸ ︷︷ ︸
(−α,1,1,+)

−α
∑

i

ĉ†
i ĉi+1b̂i+1︸ ︷︷ ︸

(−α,1,1,−)

+ α
∑

i

ĉ†
i ĉi−1b̂†

i−1︸ ︷︷ ︸
(α,−1,−1,+)

+α
∑

i

ĉ†
i ĉi−1b̂i−1︸ ︷︷ ︸

(α,−1,−1,−)

−α
∑

i

ĉ†
i ĉi−1b̂†

i︸ ︷︷ ︸
(−α,−1,0,+)

−α
∑

i

ĉ†
i ĉi−1b̂i︸ ︷︷ ︸

(−α,−1,0,−)

. (B2)

The case of the HP model is a bit more elaborate, since
the model involves different boson operators: ĥi ≡ b̂(�H )

i and
p̂i ≡ b̂(�P )

i . Thus, we have

V̂HP = αH

∑
i

ĉ†
i ĉiĥ

†
i︸ ︷︷ ︸

(αH,0,0,+)

+αH

∑
i

ĉ†
i ĉiĥi︸ ︷︷ ︸

(αH,0,0,−)

+ αP

∑
i

ĉ†
i ĉi+1 p̂†

i︸ ︷︷ ︸
(αP,1,0,+)

+αP

∑
i

ĉ†
i ĉi+1 p̂i︸ ︷︷ ︸

(αP,1,0,−)

− αP

∑
i

ĉ†
i ĉi+1 p̂†

i+1︸ ︷︷ ︸
(−αP,1,1,+)

−αP

∑
i

ĉ†
i ĉi+1 p̂i+1︸ ︷︷ ︸

(−αP,1,1,−)

+ αP

∑
i

ĉ†
i ĉi−1 p̂†

i−1︸ ︷︷ ︸
(αP,−1,−1,+)

+αP

∑
i

ĉ†
i ĉi−1 p̂i−1︸ ︷︷ ︸

(αP,−1,−1,−)

− αP

∑
i

ĉ†
i ĉi−1 p̂†

i︸ ︷︷ ︸
(−αP,−1,0,+)

−αP

∑
i

ĉ†
i ĉi−1 p̂i︸ ︷︷ ︸

(−αP,−1,0,−)

. (B3)

FIG. 7. Example of a configuration of HP bosons corresponding
to nH = [1, 0, 2, 1, 0] and nP = [0, 0, 1, 3, 1]. Similar to the single
boson models, we require that

∑
j n( j)

H � NH,
∑

j n( j)
P � NP, LH �

MH, LP � MP, and L � A.

APPENDIX C: ADDITIONAL NOTATION
FOR MIXED-BOSON MODE HP MODELS

In Sec. III C, and specifically Fig. 5, we introduced a
notation required to define the configuration space of the
HP model. First, the occupation number vector n is now a
two-row matrix, n, where, as usual, the columns index the
site index starting with i, and the two rows correspond to
the occupation numbers of the Holstein and Peierls bosons.
For clarity, we label the first row nH and the second nP. The
logic presented in Sec. II still applies in for the HP model:
V̂ can still create or destroy only a single boson at a time,
B̂i,n, and corresponding objects now reference both sets of
boson occupation numbers (and boson operators now carry
a boson-type index), ω̃ ≡ ω − �H

∑
j n( j)

H − �P
∑

j n( j)
P , etc.

As before, the leftmost occupied site is still the anchor for the
entire cloud, and thus the same reduction rules in Appendix A
apply.

In terms of the configuration space, we now limit the max-
imum number of Holstein and Peierls bosons individually,
using NH and NP, respectively, and the extent of the clouds
individually, using MH and MP, respectively. Given there are
now two overlapping clouds of bosons which live in different
Hilbert spaces, we must define yet another configuration space
parameter, which we call the absolute extent, A. This is the
maximum extent of the cloud measured from the site index of
the leftmost boson to the site index of the rightmost boson,
regardless of boson type. Note that we converged results in
Fig. 5 with respect to A as well as the other four convergence
parameters. We present an exemplary configuration space in
Fig. 7 to further highlight the aforementioned definitions.
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[29] J. Bonča and S. A. Trugman, Phys. Rev. B 103, 054304 (2021).
[30] G. De Filippis, V. Cataudella, A. S. Mishchenko, C. A. Perroni,

and N. Nagaosa, Phys. Rev. B 80, 195104 (2009).
[31] E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6376

(1998).
[32] C. Zhang, E. Jeckelmann, and S. R. White, Phys. Rev. B 60,

14092 (1999).
[33] F. Dorfner, L. Vidmar, C. Brockt, E. Jeckelmann, and F.

Heidrich-Meisner, Phys. Rev. B 91, 104302 (2015).
[34] B. Kloss, D. R. Reichman, and R. Tempelaar, Phys. Rev. Lett.

123, 126601 (2019).
[35] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514

(1998).
[36] N. Prokof’ev and B. Svistunov, Phys. Rev. B 77, 020408(R)

(2008).
[37] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000).
[38] J. T. Titantah, C. Pierleoni, and S. Ciuchi, Phys. Rev. Lett. 87,

206406 (2001).
[39] P. E. Kornilovitch, Phys. Rev. Lett. 81, 5382 (1998).
[40] We note that recent advances in diagrammatic quantum Monte

Carlo enable the summation of graphs on the real-frequency
axis, see, e.g., Refs. [73–75]. Such techniques may soon enable
the direct calculation of spectral information in the type of
models we consider here.

[41] D. Dunn, Can. J. Phys. 53, 321 (1975).
[42] Determinant quantum Monte Carlo and its variations [76–79]

have been shown to perform well for these problems.
[43] The MA approach has been validated for a large number of

systems, including but not limited to Holstein [44,53,80–83],
Peierls [64] Edwards [54], and dual-coupled polarons [70], Hol-
stein [84] and Peierls bipolarons [65], and has been applied to
model experimental systems such as graphene [85] and cuprates
[45], for example.

[44] M. Berciu, Phys. Rev. Lett. 97, 036402 (2006).

[45] H. Ebrahimnejad, G. A. Sawatzky, and M. Berciu, Nat. Phys.
10, 951 (2014).

[46] M. M. Möller, G. A. Sawatzky, M. Franz, and M. Berciu, Nat
Commun 8, 2267 (2017).

[47] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42,
1698 (1979).

[48] W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22,
2099 (1980).
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[63] S. Barišić, J. Labbé, and J. Friedel, Phys. Rev. Lett. 25, 919

(1970).
[64] D. J. J. Marchand, G. De Filippis, V. Cataudella, M. Berciu,

N. Nagaosa, N. V. Prokof’ev, A. S. Mishchenko, and P. C. E.
Stamp, Phys. Rev. Lett. 105, 266605 (2010).

[65] J. Sous, M. Chakraborty, R. V. Krems, and M. Berciu, Phys.
Rev. Lett. 121, 247001 (2018).

[66] J. Sous, M. Chakraborty, C. Adolphs, R. Krems, and M. Berciu,
Sci. Rep. 7, 1169 (2017).

[67] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman,
J. Chem. Phys. 138, 114102 (2013).

[68] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman,
J. Chem. Phys. 138, 114103 (2013).

[69] J. H. Fetherolf, D. Golež, and T. C. Berkelbach, Phys. Rev. X
10, 021062 (2020).

[70] D. J. J. Marchand, P. C. E. Stamp, and M. Berciu, Phys. Rev. B
95, 035117 (2017).

[71] G. L. Goodvin, A. S. Mishchenko, and M. Berciu, Phys. Rev.
Lett. 107, 076403 (2011).

[72] J. Sous, M. Berciu, and R. V. Krems, Phys. Rev. A 96, 063619
(2017).

[73] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys.
Rev. B 99, 035120 (2019).

[74] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys.
Rev. B 101, 125109 (2020).

035106-11

https://doi.org/10.1126/science.aag1992
https://doi.org/10.1021/acsphotonics.7b00680
https://doi.org/10.1126/science.aba3544
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1038/nature11151
https://doi.org/10.1103/PhysRevLett.117.055302
https://doi.org/10.1103/PhysRevLett.117.055301
https://doi.org/10.1103/PhysRevLett.114.251602
https://doi.org/10.1038/s41535-020-00278-2
https://doi.org/10.1103/PhysRevB.102.214437
https://doi.org/10.1103/PhysRevB.60.1633
https://doi.org/10.1103/PhysRevB.76.035121
https://doi.org/10.1103/PhysRevB.103.054304
https://doi.org/10.1103/PhysRevB.80.195104
https://doi.org/10.1103/PhysRevB.57.6376
https://doi.org/10.1103/PhysRevB.60.14092
https://doi.org/10.1103/PhysRevB.91.104302
https://doi.org/10.1103/PhysRevLett.123.126601
https://doi.org/10.1103/PhysRevLett.81.2514
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevLett.87.206406
https://doi.org/10.1103/PhysRevLett.81.5382
https://doi.org/10.1139/p75-042
https://doi.org/10.1103/PhysRevLett.97.036402
https://doi.org/10.1038/nphys3130
https://doi.org/10.1038/s41467-017-02442-y
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.5.932
https://doi.org/10.1103/PhysRevB.5.941
https://doi.org/10.1103/PhysRevB.69.075211
https://doi.org/10.1103/PhysRevB.76.165109
https://doi.org/10.1103/PhysRevB.82.085116
https://doi.org/10.1103/PhysRevB.85.094302
https://doi.org/10.1103/PhysRevB.81.165113
https://doi.org/10.1103/PhysRevB.88.024302
https://doi.org/10.1103/PhysRevLett.25.919
https://doi.org/10.1103/PhysRevLett.105.266605
https://doi.org/10.1103/PhysRevLett.121.247001
https://doi.org/10.1038/s41598-017-01228-y
https://doi.org/10.1063/1.4794425
https://doi.org/10.1063/1.4794427
https://doi.org/10.1103/PhysRevX.10.021062
https://doi.org/10.1103/PhysRevB.95.035117
https://doi.org/10.1103/PhysRevLett.107.076403
https://doi.org/10.1103/PhysRevA.96.063619
https://doi.org/10.1103/PhysRevB.99.035120
https://doi.org/10.1103/PhysRevB.101.125109


CARBONE, REICHMAN, AND SOUS PHYSICAL REVIEW B 104, 035106 (2021)
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