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ABSTRACT
A fully microscopic model of the doping-dependent exciton and trion linewidths in the absorption spectra of monolayer transition metal
dichalcogenides in the low temperature and low-doping regime is explored. The approach is based on perturbation theory and avoids the
use of phenomenological parameters. In the low-doping regime, we find that the trion linewidth is relatively insensitive to doping levels,
while the exciton linewidth increases monotonically with doping. On the other hand, we argue that the trion linewidth shows a somewhat
stronger temperature dependence. The magnitudes of the linewidths are likely to be masked by phonon scattering for T ≥ 20 K in encapsulated
samples in the low-doping regime. We discuss the breakdown of perturbation theory, which should occur at relatively low-doping levels and
low temperatures. Our work also paves the way toward understanding a variety of related scattering processes, including impact ionization
and Auger scattering in clean 2D samples.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008730., s

I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDCs) are
quasi-two-dimensional materials known to exhibit extraordinary
physical phenomena.1,2 These materials may be viewed as semi-
conducting analogs of graphene3–5 and present with non-trivial
optical, electronic, and, under some circumstances, topological and
superconducting properties.6,7 Due to their unique characteris-
tics, monolayer TMDCs have been proposed for myriad practi-
cal applications8 such as opto-electronics,9–12 field-effect transis-
tors,13 and digital logic gates.14,15 Of particular fundamental inter-
est is the nature of electron–hole complexes such as excitons16,17

and trions18,19 in TMDCs. Due to the reduced screening in two-
dimensional (2D) systems, such stable carrier complexes may have
anomalously large binding energies, with that of the exciton reach-
ing ∼0.5 eV16,20–22 and that of the trion reported to be in the range
of 20–35 meV,18,21,23–25 implying that trions are bound even at room
temperature. These observations indicate that monolayer TMDCs
are unique systems for investigating the properties of strongly

interacting quasiparticles. In addition, they may provide unprece-
dented experimental clarity concerning the nature of interactions
between these electron–hole complexes and phonons26,27 as well as
with charge carriers and other quasiparticles.

A standard means of probing the nature of the interactions
of excitons and trions with other excitations is via the broadening
of linewidths in clean samples with respect to control parameters
such as the temperature or carrier density. Intrinsic homogeneous
quasiparticle (QP) linewidths26 are generally obfuscated by inhomo-
geneous broadening due to the high level of static defects in pro-
cessing. However, recent work has led to the observation of very
narrow QP linewidths via the preparation of ultra-clean samples
by both dry transfer methods and chemical vapor deposition28–30

and by the usage of non-linear spectroscopy to extract the homo-
geneous linewidth from inhomogeneously broadened spectra.26 The
optical interrogation of the exciton and trion linewidths in these
less defective samples offers a unique opportunity to understand the
mechanisms of the 2D exciton and trion scattering processes in
quasi-2D systems.
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There are many factors that affect line broadening in monolayer
TMDCs, most notably interactions with phonons (as controlled by
temperature) and interactions with other charge carriers (as con-
trolled by doping). At very low temperatures and near the charge-
neutrality point,27 it is expected that the intrinsic homogeneous
linewidth due to lifetime broadening may be observed if the sample
is clean enough. As temperature increases, phonons begin to play
a significant role and will eventually dominate the line broadening
process. The interaction of excitons with phonons has been studied
in some detail in TMDCs,27,31 and a variety of coupling motifs have
been elucidated experimentally and theoretically.

Additionally, the concentration of electrons as controlled by
gating can alter linewidths and line shapes in a non-trivial fash-
ion.16,32–34 Studies that have investigated the electron density depen-
dence of optical line shapes in monolayer TMDCs from the Fermi-
polaron perspective provide a means of describing optical line
broadening as a function of doping.35–41 Such many-body mul-
tiple scattering theories are essential for properly describing the
full range of doping-dependent behavior, as the Fermi golden rule
breaks down at sizable doping levels. However, the use of graphene
gating and clean samples renders the investigation of the dop-
ing regime close to the charge-neutrality point possible.42 Here,
detailed microscopic golden rule-based calculations that can pro-
vide new insights into the line broadening mechanisms may be
performed. Motivated by the aforementioned recent experimental
works, we follow this latter path to assess how the elastic scat-
tering of excitons and trions with free charge carriers may alter
linewidths of both ground and excited state excitonic complexes
in the low-doping regime. In particular, we investigate the circum-
stances for which doping-related broadening may compete with
phonon-induced broadening, and we discuss the breakdown of the
perturbative approach as a function of temperature and carrier
density. The importance of our work extends beyond the descrip-
tion of linewidths and is of relevance for describing scattering
processes such as Auger recombination and impact ionization in
TMDCs.

Our paper is organized as follows: We first present an out-
line of the microscopic theory in Sec. II, focusing on the electron–
exciton scattering calculation, which is discussed in Subsection II A.
Calculations for the electron–trion scattering are similar to that of
the exciton and discussed (briefly) in Subsection II B. The low-
temperature results for the trion and exciton linewidths, in addi-
tion to the details of the model and limitations of the golden rule
approach, are presented and discussed in Sec. III. Finally, in Sec. IV,
we summarize our conclusions and discuss outlook and potential
future work. Details not contained in the main text are located in
several appendixes.

II. METHODOLOGY
In this section, the elastic (energy-conserving) scattering of

electrons from both excitons and trions are described within the
Fermi golden rule approximation. Additionally, because we work at
the golden rule level of theory, bound states in scattering are not
considered. While such a treatment can only be valid at extremely
low doping densities, recent synthetic work using encapsulated sam-
ples points to a route to experimentally controlled access to this
regime. Furthermore, the use of the golden rule allows for a very

detailed microscopic description,43,44 the limitations of which will
be discussed in the following sections.

A. Electron–exciton elastic scattering
In order to facilitate the computation, we use a simple varia-

tional guess for the exciton wave function

ϕ(r) =
√ π

2λ2 e
−r/λ, (1)

where r is the relative coordinate of the two-body system. The
optimal effective Bohr radius λ is chosen to best match the func-
tional form of (1) to the ground state of a Wannier exciton in a
Rytova–Keldysh potential45,46 found using exact diagonalization.

The second-quantized form of the exciton-free electron scatter-
ing state is

∣kx,ke⟩ =∑
k′
ϕ∗αxkx+k′ψ

∗
kec

†
−k′d

†
kx+k′c

†
ke
∣0⟩, (2)

which is a direct product state of the free exciton and electron states,
∣kx⟩⊗ ∣ke⟩. The wave function

ϕk =

√
8πλ2

A
g(λk) (3)

satisfies normalization ∑k ϕ
2
k → A

(2π)2 ∫d2kϕ2
k = 1 and is

derived by performing an in-plane Fourier transform of (1), where
g(x) = [1+x2

]
−3/2, ck (dk) are electron (hole) annihilation operators

for momentum index k,A is the in-plane area of the 2D material, and
αx = me/Mx is the ratio of the electron and exciton effective masses
(which manifests during the coordinate transform to relative/center
of mass coordinates). The free-electron wave function ψk ∝ e−ik ⋅R

characterizes an electron that may exhibit free in-plane motion and
together with the center of mass coordinate of the exciton, con-
tributes only a global phase factor that may be ignored in subsequent
calculations, as it does not contribute to the determination of the
scattering rate.

Scattering matrix elements are computed by evaluating
the coupling between an initial QP-free electron state, ∣kx,ke⟩,
and a final QP-free electron state in which momentum q is
transferred, ⟨kx + q,ke − q∣. The second-quantized, momentum-
conserving potential energy operator V = Veh + Vee that mediates
this coupling may be split into electron–hole and electron–electron
components,

Veh = − ∑
k1 ,k2 ,q
s=↑,↓

vqcs†k1+qd
†
k2−qdk2c

s
k1 (4a)

and

Vee =
1
2 ∑

k1 ,k2 ,q
s1 ,s2=↑,↓

vqcs1†
k1+qc

s2†
k2−qc

s2
k2
cs1
k1

, (4b)

where vq =
2πe2

Aqε(q) is the magnitude of the two-body interac-
tions and ε(q) is a static dielectric function discussed in Sec. II C.
The exciton-free electron elastic scattering matrix elements are
henceforth defined as

V(q,ke,kx) = ⟨kx + q,ke − q∣V ∣kx,ke⟩. (5)
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Once matrix elements have been computed, the linewidth
Γ(n; kx) is calculated by summing over all final exciton states,

Γ(n,kx) =
h̵A
(2π)2 ∫ d2qw(q;n,kx). (6)

Here, w(q; n, kx) is a partial scattering rate computed for fixed
momentum transfer using Fermi’s golden rule,

w(q;n,kx) =
2π
h̵ ∑ke

∣V(q,ke,kx)∣
2f (ke)[1 − f (∣ke − q∣)]

× δ(
h̵2k2

x

2Mx
+
h̵2k2

e

2me
−
h̵2
∣kx + q∣2

2Mx
−
h̵2
∣ke − q∣2

2me
), (7)

where the Fermi–Dirac distribution

f (k) = [e(h̵
2k2
/2me−μ)/kBT + 1]

−1
(8)

contains doping-density (n) dependence through the chemical
potential μ = kBT ln[exp εF/kBT − 1] and the Fermi energy of a 2D
electron gas, εF = πh̵2n/me. In order to simplify the calculations, the
parameter kx = 0 is taken in all computations, effectively choosing a
reference frame in which the exciton is at rest. For further details, we
refer the reader to Ref. 43, where similar calculations are performed
for anisotropic 3D systems.

B. Electron–trion scattering
Computation of the trion-free electron elastic scattering

linewidth contribution is similar to that of the excitonic case in all
ways except for the determination of the scattering matrix elements.
The trion-free electron scattering state is constructed similarly to
that of (2), with a few key distinctions to be noted below. Explicitly,
we write this scattering state as

∣kt,ke⟩ = ∑
k1 ,k2
s1 ,s2 ,se

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kec

s1†
−k1

cs2†
−k2

d†
kt+k1+k2

cse†
ke
∣0⟩.

(9)

Note the introduction of a spin wave function that constrains the
trion to the singlet spin configuration, ξS(s1, s2) = ⟨s1s2∣∣S⟩, via the
projection of a two-fermion spin state ⟨s1s2∣ on the singlet state
∣S⟩. The projection satisfies the properties ∑s1 ,s2

ξ∗S (s1, s2)ξS(s1, s2)

= ⟨S∣∣S⟩ = 1, and ξS(s1, s2) = −ξS(s2, s1) as per Fermionic anti-
commutation rules. Given that the trion triplet state is, at most,
weakly bound, we consider only singlet to singlet scattering.

The trion wave function, Φ, is given by

Φk1 ,k2 = N
8πλ1λ2

A
g(λ1k1)g(λ2k2). (10)

Here, λ1 and λ2 are variational parameters associated with the
Chandrasekhar-type wave function,18,47 and the constant N is a
normalization factor,

N = 1
√

1 + κ2
, κ =

4λ1λ2

(λ1 + λ2)2 , (11)

that arises during the variational minimization of the trion binding
energy.48

FIG. 1. Linewidth broadening of monolayer MoSe2 as a function of electron doping
density for BN-encapsulated (ε0 = 4.5)61 monolayers. The following parameters
were used: in the exciton calculation, the effective Bohr radii λ0 = 10.3 and in the
case of the trion, λ1 = λ0 and λ2 = 25.2 Å.18 In the exciton 2s elastic scattering,
a = 7.79 Å and b = 6.20 Å (see Appendix B 4). The electron (hole) effec-
tive masses employed were 0.49 (0.61) (in units of m0),62 and the polarizabil-
ity was χ2D = 8.23 Å.18 In the case of exciton elastic scattering, the singlet
and triplet contributions are identical as the exchange contribution to the poten-
tial dominates; trion triplet states are not considered. Additionally, screening
using the effective frequency-dependent dielectric function [see Eq. (16)] are pre-
sented for the trion, as effective screening does not appear to affect the exciton
linewidth.

Once the matrix elements

V(q,ke,kt) = ⟨kt + q,ke − q∣V ∣kt,ke⟩ (12)

are computed, the trion linewidth may be determined using (6) and
(7) in the same way as for the exciton case (with the appropriate sub-
stitutions, e.g., the initial QP momentum kx → kt, the mass ratio αx
→ αt =me/Mt, etc.). Linewidths for low doping densities are reported
in Sec. III, computational details of this calculation are given in
Appendix D, and the physical parameters used may be found in the
caption of Fig. 1.

C. Dielectric function

The dielectric function ε(q, ω) takes into account properties
of the monolayer TMDC, the surrounding medium, and the excess
electron gas,49 respectively, and may be broken down into distinct
contributions as50

ε(q,ω) = εI(q) + εII(q,ω). (13)

We follow previous work51 and screen the direct and exchange inter-
actions, in contrast to the usual Bethe-Salpeter treatment of bound
state formation where the exchange interaction is unscreened.52–55
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The first term consists of a static contribution from the monolayer
TMDC and surrounding layers in the absence of doping,

εI(q) = ε0(1 + 2πχ2Dq), (14)

where ε0 = (εa + εb)/2 is the dielectric constant of the surrounding
medium45,46 (the average of the two encapsulating dielectrics) and
χ2D is the dielectric polarizability of the 2D material.

The second term is due to the presence of doping electrons and
is generally frequency dependent. We follow Stern49 and treat the
excess electrons as a 2D homogeneous electron gas (HEG). In the
static (ω = 0) approximation, this yields

εII(q, 0) =
2 me2

h̵2q

⎧⎪⎪
⎨
⎪⎪⎩

1 if q ≤ 2kF

1 −
√

1 − (2kF/q)2 if q > 2kF.
(15)

Note that (15) implicitly carries a doping density (n) dependence
through the Fermi momentum pF = h̵kF = h̵

√
2πn.

To motivate this choice, we observe that ε(q, 0) captures the
correct behavior in both the small-wavelength and low-doping lim-
its. In the low-doping limit, the Stern-like term vanishes and the
dielectric function ε(q, 0) → εI(q), which is the dielectric function
of the material and its surroundings. The low q-limit suppresses the
term containing the polarizability and diverges like 1/q, correctly
screening the 2D Coulomb interaction at small q.56

If doping levels are large enough, the static approximation pre-
sented above will fail.56,57 Although this signals one aspect of the
high doping density breakdown of the golden rule, one way to
potentially extend its domain of validity is to utilize a frequency-
dependent scattering matrix element as discussed in Ref. 51. This
leads to a dielectric function derived from the 2D Lindhard function,
εII(q, Eeff/h̵),49,51 evaluated at the effective energy

Eeff ≡ E(ke) − E(∣ke − q∣) =
h̵2
(2ke ⋅ q − q2

)

2m0
, (16)

which is the energy difference between the initial and final states of
the scattering electron. The details of εII(q, ω) are presented in Ref.
49 and in Appendix A.

III. RESULTS AND DISCUSSION
The Fermi golden rule is expected to be valid only in the ultra-

low doping regime (εF ≪ εt ∼ 1012 cm−2), where εt denotes the
trion binding energy in the limit of zero doping. As the doping level
increases, many-body, multi-scattering effects become prominent,58

and a Fermi-polaron-like picture appears to be required.35,37,38 Since
the low-doping regime is now potentially controllable and accessible
in encapsulated samples with graphene gating layers, a golden rule
approach is useful in enabling a fully microscopic treatment in this
restricted regime.

Linewidths vs doping level for both the exciton and trion lines
are displayed for 5 K and 25 K in Fig. 1. Results are presented for
the experimentally relevant case of a layer encapsulated by dielec-
tric media with properties mimicking those of boron nitride. We
also note that in a hypothetical suspended sample (ε0 = 1), Γ is
enhanced compared to results presented in Fig. 1 (e.g., roughly

5 meV at 1011 cm−2, compared to only 1 meV in the encapsulated
case) and is comparable to, or even larger than, that associated with
phonon-induced broadening, since the scaling of Γ with respect to
the background dielectric function varies roughly as ε−2

0 . It should
also be noted that in experiments the encapsulating layers are of
finite thickness, and while this situation can be handled theoret-
ically,59,60 we do not do so here as it complicates the treatment
of the dielectric function. We thus expect the true magnitude of
linewidth values to be somewhat larger than the values presented in
Fig. 1. Additionally, while we have also carried out an investigation
of inelastic electron-capture scattering, we find that elastic scattering
dominates the linewidths in the regimes we consider. Thus, we only
focus on the elastic scattering contributions.

We first discuss trion line broadening. For doping levels
n > 0.4 × 1011 cm−2, the trion linewidth in all cases is largely inde-
pendent of doping density. The upturn seen in the static screening
trion linewidth as doping density decreases is likely an artifact of
behavior embedded in the function ε2(q). Indeed, a suppression of
the q−3 behavior for large q of this function leads to an essentially flat
trion linewidth as a function of doping level, similar to that seen in
Fermi-polaron-like theories and in some experiments.63,64 It should
be noted that in these approaches, however, the trion line broad-
ening is controlled by a phenomenological input parameter. For
example, the width of the doping-independent trion line in the work
of Efimkin and MacDonald38 is given by the parameter γ, which is
input phenomenologically by hand, is not derived directly from the
microscopic interactionsin the system.

Here, our fully microscopic approach allows for the micro-
scopic extraction of the magnitude and temperature dependence
of the trion linewidth. While the static and effective frequency-
dependent screening cases are largely in agreement at low T, the
same cannot be said for results at 25 K. Given the subtle changes
in the scattering matrix elements except at small q, this difference
likely arises from the larger accessible density of states available at
higher densities away from ω = 0 in the screening function.

We now turn to the broadening of the exciton line. Unlike the
trion case, the exciton linewidth monotonically increases as a func-
tion of doping density at low values of n in the 25 K case. This
is again in agreement with experimental expectations65–67 as well
as the behavior found in many-body approaches.35,38,58 In particu-
lar, in these latter theoretical approaches, an approximately linear
dependence of the linewidth on doping manifests over a much wider
doping density range for the exciton line. The very same behavior
arises from the golden rule at extremely low doping. The decrease
of the slope of the linewidth as n increases, most clearly demon-
strated in the near-plateau of the 5 K exciton linewidths above
n = 0.8 × 1011 cm−2, is a signature of the breakdown of the golden
rule. Specifically, due to the εF/kBT term in the Fermi–Dirac dis-
tribution function, the crossover from the non-degenerate to the
degenerate electron gas limit will induce a change in the doping
dependence of the excitonic linewidth from a linear scaling Γ ∼ n
at low doping to an eventual plateau ∼kBT, and then an unphysical
decline with increasing n. This same trend is reported in Ref. 43 for
the quantum well case. We systematically examine this behavior in
Fig. 2, which shows the doping and temperature dependence of this
behavior. If one focuses on the more physically described regime
n < 0.8 × 1011 cm−2, it is observed that, unlike in the trion case,
doping-induced exciton line broadening is largely insensitive to
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FIG. 2. Doping dependence of the 1s exciton linewidth at
temperatures T = 5, 6, . . ., 15 K (left). Parameters describe
monolayer MoSe2, as seen in Fig. 1. Lower linewidths
correspond to lower temperatures. The horizontal dashed
lines show the plateau location. The value of the maxi-
mum (plateau) is also plotted as a function of temperature,
showing a clearly linear behavior at low T (right).

temperature variations in the range T = 5–25 K. Furthermore,
given the fact that phonon-induced line broadening is suppressed
at these temperatures, doping-induced line broadening effects may
be observable at T = 5 K in clean, encapsulated samples even for
doping densities as low as n ∼ 2 × 1011 cm−2, especially with respect
to the 2s line, where the line broadening effects appear to be slightly
enhanced compared to the ground state.

IV. CONCLUSION
In this work, we have employed perturbation theory to calcu-

late the rates of electron–exciton and electron–trion scattering in
monolayer TMDCs in the low doping density limit. Our approach
is fully microscopic with respect to all input parameters and func-
tions, including matrix elements and the dielectric screening model.
On the other hand, it is expected that the Fermi golden rule should
break down at low doping densities close to the degeneracy crossover
of the electron gas in the monolayer, and some caution must be exer-
cised with respect to the use of the forms of the dielectric screening
functions employed here.56 Avoiding these approximations allows
for the description of a much broader range of doping but requires a
full frequency-dependent many-body treatment.35,37,38

Accepting the above limitations, the calculations presented here
still allow for some important conclusions to be drawn. First, we
find that with a reasonable treatment dielectric environment, exci-
ton linewidths arising from exciton–electron scattering on the order
of 1 meV or higher are possible at low temperatures in the low-
doping regime accessible in encapsulated, graphene-gated samples.
Thus, even mild doping may provide a line broadening mechanism
that can compete with (but not necessarily exceed) lifetime and
phonon-related broadening in this regime. As expected from pre-
vious many-body calculations in the very low-doping regime, the
growth of the excitonic linewidth is monotonic with increasing n,
while the trion linewidth is largely insensitive to doping. However,
we find that the trion linewidth is sensitive to temperature variations
even over the small range T = 5–25 K, a somewhat unexpected fea-
ture from the standpoint of many-body theories such as that of Ref.
38 where the trion linewidth is partly described by a phenomenolog-
ical input parameter. Lastly, we find that excited state exciton line

broadening is somewhat larger and shows more sensitivity to
increases in doping levels. Future work should be devoted to test-
ing the veracity of these predictions and to understand how they
merge with many-body approaches that have been applied to study
the higher doping density regime.68

In conclusion, we have provided a microscopic model for
understanding how the scattering of excitons and trions sur-
rounded by an electron gas in monolayer TMDCs may induce
line broadening in the very low-doping density limit at low tem-
peratures. A more detailed effort aimed at placing these contribu-
tions in the context of other mechanisms, such as exciton–phonon
scattering, is worthy of future study. In addition, the approach
adopted here may be of use for the calculation of the rates of
processes such as Auger recombination69–71 in dimensionally con-
fined systems. These and related topics will be the subject of future
investigations.
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APPENDIX A: RPA POLARIZABILITY
Following the definition in Stern,49 in this appendix, we present

the frequency-dependent 2D electron gas polarizability, χ, and its
ω → 0 limit. The general form of χ is χ(q, ω) = χ1(q, ω) + iχ2
(q, ω), where

χ1(z, ũ) =
e2m
h̵2q2π

{1 −
C−(z, ũ)

2

√

(1 − ũ)2
− z−2

−
C+(z, ũ)

2

√

(1 + ũ)2
− z−2} (A1)
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and

χ2(z, ũ) =
e2m
h̵2q2π

{
D−(z, ũ)

2

√

z−2 − (1 − ũ)2

−
D+(z, ũ)

2

√

z−2 − (1 + ũ)2
}, (A2)

where z ≡ q/2kF and ũ ≡ 2ωm/h̵q2. Note that the quantities in the
braces, {⋅}, are dimensionless. The functions C and D are defined as
follows:

C±(z, ũ) ≡
⎧⎪⎪
⎨
⎪⎪⎩

(z ± ũ)/∣z ± ũ∣ if ∣z ± ũ∣ > 1

0 otherwise
(A3)

and

D±(z, ũ) ≡
⎧⎪⎪
⎨
⎪⎪⎩

0 if ∣z ± ũ∣ > 1

1 otherwise.
(A4)

In the static approximation, we note that χ2(q, 0) = 0 and χ1 reduces
to (15), where generally

ε2(q,ω) = 2πB(q,ω)χ(q/2kF, 2ωm/h̵q2
), (A5)

and B(q,ω) =
√
q2 − ε0ω2c−2.

APPENDIX B: EXCITON–ELECTRON ELASTIC
SCATTERING

In this appendix, we outline the details of the X + e− → X + e−

scattering calculation, including accounting for electron spin. Here,
and in Appendix C, we closely follow the approach of Ref.
43, generalizing to the strict 2D limit and filling in necessary
details.

In the following, it will be useful to keep in mind the electron
and hole anti-commutation relations

{ds†k , cs
′†
k′ } = {d

s†
k , cs

′

k′} = {d
s
k, cs

′†
k′ } = {d

s
k, cs

′

k′} = 0

(electrons and holes always anti-commute) and

{xsk, xs
′

k′} = {x
s†
k , xs

′†
k′ } = 0; {xsk, xs

′†
k′ } = δkk′δss′ ,

where x = c, d. Moreover, recall that ψke ends up as a global phase
factor in the expression for the scattering rate and will be ignored in
the following derivations.

1. General form of the matrix elements
A prudent first step to computing (5) is to split up V into its

constituent parts and evaluate them independently on the initial
state ∣kαx ,kβe⟩, where spin indexes have been added as superscripts

(the exciton spin references the electron; hole spin will not be
important). In the case of the electron–hole component, we have

Veh∣kαx ,kβe⟩ =∑
k′q′

vq′ϕ∗ cα†−k′+q′d
†
kx+k′−q′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
self-interaction

cβ†ke
∣0⟩

− ∑
k′q′

vq′ϕ∗cα†−k′d
†
kx+k′−q′c

β†
ke+q′ ∣0⟩, (B1)

where ϕ∗ ≡ ϕ∗αxkx+k′ . The first term in the above equation only
contains information about the exciton interacting with itself (self-
interaction) and is therefore discarded. The electron–electron com-
ponent is calculated in a similar fashion and does not contain
self-interaction terms,

Vee∣kαx ,kβe⟩ =∑
k′q′

vq′ϕ∗cα†−k′−q′d
†
kx+k′c

β†
ke+q′ ∣0⟩. (B2)

From here, by direct computation, we find the general matrix
elements of the electron–exciton elastic scattering process to be

⟨(kx + q)θ, (ke − q)ω∣Veh∣kαx ,kβe⟩

= − ∑
k′′k′q′

ϕ1ϕ∗2 vq′(δ
θα
k′′ ,k′δ

ωβ
−q,q′ − δ

θβ
−k′′ ,ke+q′δ

ωα
k′ ,ke−q), (B3)

where ϕ1ϕ∗2 ≡ ϕαxkx+αxq+k′′ϕ∗αxkx+k′ . Explicitly, this is

⟨(kx + q)θ, (ke − q)ω∣Veh∣kαx ,kβe⟩

= vqδθαδωβ∑
k′
ϕαxkx+αxq+k′ϕαxkx+k′

−ϕαxkx−ke+qδθβδωα∑
k′
ϕαxkx+αxq−ke−k′vk′ , (B4)

which can be separated into direct (corresponding to vq) and
exchange (vk′ ) contributions. It is also observed that for practical
computations, ϕ = ϕ∗ and thus the complex conjugation is dropped.
The electron–electron term is computed as

⟨(kx + q)θ, (ke − q)ω∣Vee∣kαx ,kβe⟩

= ∑
k′′k′q′

ϕ1ϕ∗2 vq′(δ
θα
k′′ ,k′+q′δ

ωβ
q,−q′ − δ

θβ
−k′′ ,ke+q′δ

ωα
−k′−q′ ,ke−q) (B5)

and simplified in a similar fashion,

⟨(kx + q)θ, (ke − q)ω∣Vee∣kαx ,kβe⟩

= vqδθαδωβ∑
k′
ϕαxkx−βxq+k′ϕαxkx+k′ − δθβδωα

×∑
k′
ϕαxkx+αxq−ke−k′ϕαxkx+q−ke−k′vk′ . (B6)

Combining terms into direct and exchange contributions, we have

VD
(q,ke,kx) = vqδθαδωβ∑

k′
ϕαxkx+k′[ϕαxkx−βxq+k′ − ϕαxkx+αxq+k′],

(B7)
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where the Kronecker delta functions ensure that the proper spins are
paired, and

VXC
(q,ke,kx) = −δθβδωα∑

k′
vk′ϕαxq−Δkx+k′[ϕq−Δkx+k′ − ϕq−Δkx],

(B8)
where Δkx ≡ ke − αxkx.

2. Spin contributions
Both the Vee and Veh terms can be split into clear direct and

exchange contributions such that in the individual electron spin
basis,

⟨θω∣V ∣αβ⟩ = δθαδωβV
D + δθβδωαV

XC.

If the incident and exciton electrons are in a singlet configu-
ration, we have to consider all contributions from the singlet state
∣S⟩ = (∣↑↓⟩ − ∣↓↑⟩)/

√
2,

⟨S∣V ∣S⟩ =
1
2
(⟨↑↓∣V ∣↑↓⟩ + cc. − ⟨↑↓∣V ∣↓↑⟩ − cc.),

which in the specified basis is

VS ≡ ⟨S∣V ∣S⟩ = VD
− VXC.

By inspection, any of the triplet configurations are

VT ≡ ⟨T∣V ∣T⟩ = V
D + VXC.

In the case of the exciton case, the singlet and triplet contributions
are essentially identical since the exchange contribution dominates,
meaning |VS|2

≈ |VT |2; for the trion, we do not consider triplet
states.

3. 1s → 1s scattering
With the assumption that the exciton wave function ϕ is in the

parameterized ground state (1s) given by (3), the direct interaction
has an analytic form. Noting that

∑
k
→

A
(2π)2 ∫ d2k, k ∈ R2,

and that the convolution

∫ d2k′g(λk′)g(λ′∣q ± k′∣) =
2π

(λ + λ′)2 g(
λλ′q
λ + λ′

), (B9)

the direct terms simplify to (dropping the spin Kronecker deltas)

VD
1s(q) =

2πe2

Aqε(q)
[g(λβxq/2) − g(λαxq/2)]. (B10)

The exchange terms do not simplify and must be evaluated numeri-
cally,

VXC
1s (q,ke,kx) = −

4e2λ2

A ∫
d2k′

k′ε(k′)
g(λ∣αxq − Δkx + k′∣)

× [g(λ∣k1 + q − Δkx∣) − g(λ∣q − Δkx∣)]. (B11)

These results have been previously derived for scattering in finite
quantum wells43 and match the results above in the 2D analytic
limit. Here, λ = λ0 = 10.3 Å is the exciton effective Bohr radius, and

αx = me/Mx is the mass ratio of the exciton, βx = 1 − αx, me = 0.49m0
and Mx = me + mh, where mh = 0.61m0.

4. 2s → 2s scattering
To compute the excited state (2s) exciton elastic scattering

linewidth, we parameterize a radial 2s hydrogen wave function,

ϕ2s
(r, a, b)∝ (2 −

r
b
)e−r/2a, (B12)

in terms of an effective Bohr radius a and a secondary parameter b
chosen to ensure orthogonality to the 1s state. An initial fit to the
first excited state exact-diagonalization result of the Wannier exci-
ton in a 2D Keldysh potential yielded length scales a = 7.79 Å and
b = 5.33 Å, the latter of which was modified to b = 6.20 Å to ensure
orthogonality. Fourier transforming to momentum-space yields

ϕ2s
k = N2s

⎡
⎢
⎢
⎢
⎢
⎣

16πa2

(1 + 4a2k2)3/2
−

2π( 1
2a2 − k2

)

b( 1
4a2 + k2)

5/2

⎤
⎥
⎥
⎥
⎥
⎦

(B13)

with the normalization

N2s =

√
b2

4πa2A(3a2 − 4ab + 2b2)
.

Matrix elements are computed by making the substitution
ϕ → ϕ2s in (B7) and (B8) and numerically performing the 2D
integrals.

APPENDIX C: TRION–ELECTRON ELASTIC
SCATTERING

The details of the T + e− → T + e− scattering process are sig-
nificantly more involved than the exciton case. The introduction of
an extra electron manifests as another pair of creation and annihi-
lation operators in the matrix element evaluation and adds many
more terms. While the calculation is longer, it is no more conceptu-
ally difficult. In this appendix, we present the detailed derivation of
the matrix elements for a 2D system, which coincide with the results
for the 3D quantum well in the L→ 0 limit.43

The total elastic scattering matrix element V(q,ke,kt) is cal-
culated by first computing the action of V|kt, ke⟩. This not only
simplifies the number of operator contractions, but it also allows for
the removal of self-interaction terms (those characterized by internal
interactions between electrons and holes within the trion), as they
do not contribute to the scattering matrix elements (similar to that
of the exciton scattering case). To begin, we first evaluate the general
contraction, which is used during the evaluation of (12),

c1c†2c
†
3c

†
4 ∣0⟩ = [δ12c†3c

†
4 − δ13c†2c

†
4 + δ14c†2c

†
3]∣0⟩, (C1)

where in (C2), 1 ≡ (k′1, z′1, s′), 2 ≡ (−k1, z1, s1), 3 ≡ (−k2, z2, s2), and 4
≡ (ke, ze, se), as this will be useful in computing both Veh|kt, ke⟩ and
Vee|kt, ke⟩. In following calculations, hole operators will be ignored,
as they do not contribute additional constraints or prefactors to the
linewidth calculations. Moreover, Veh|kt, ke⟩ evaluates to
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Veh∣kt,ke⟩ = − ∑
k1 ,k2 ,k′1 ,q′

s1 ,s2 ,se ,s′

vq′ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kec

s′†
k′1+q′c

s′
k′1c

s1†
−k1

cs2†
−k2

cse†ke ∣0⟩

= − ∑
k1 ,k2 ,q′
s1 ,s2 ,se

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kevq′{c

s1†
−k1+q′c

s2†
−k2

cse†
ke
− cs2†
−k2+q′c

s1†
−k1

cse†
ke

+ cse†
ke+q′c

s1†
−k1

cs2†
−k2
}∣0⟩.

(C2)

The first two terms correspond to self-interactions between the
internal electrons and holes of the trion. This is most easily seen by
observing that after the action of Veh on the trion-free electron state,
the initial incident electron momentum ke remains unchanged in
the final creation operator. In the last term, however, we see that a
momentum exchange of q′ has taken place.

The electron–electron terms corresponding to Vee∣kt,ke⟩ are
calculated similarly. As in the electron–hole case, we begin by
performing the right-most contraction

c1c2c†3c
†
4c

†
5 ∣0⟩ = [δ15δ24 − δ14δ25]c†3 ∣0⟩

+ [δ13δ25 − δ15δ23]c†4 ∣0⟩

+ [δ14δ23 − δ13δ24]c†5 ∣0⟩, (C3)

where in (C3) and (C4) 1 ≡ (k′2, s′2), 2 ≡ (k′1, s′1), 3 ≡ (−k1, s1),
4 ≡ (−k2, s2), 5 ≡ (ke, se). In a similar fashion, Vee∣kt,ke⟩ is thus found
to be

Vee∣kt,ke⟩ =
1
2 ∑

k1 ,k2 ,k′1 ,k′2 ,q′

s1 ,s2 ,se ,s′1 ,s′2

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kevq′c

s′1†
k′1+q′c

s′2†
k′2−q′

cs
′

2
k′2
cs
′

1
k′1
cs1†
−k1

cs2†
−k2

cse†
ke
∣0⟩

=
1
2 ∑

k1 ,k2 ,q′
s1 ,s2 ,se

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kevq′{c

s2†
−k2+q′c

se†
ke−q′c

s1†
−k1
− cse†

ke+q′c
s2†
−k2−q′c

s1†
−k1

+ cse†
ke+q′c

s1†
−k1−q′c

s2†
−k2
− cs1†
−k1+q′c

se†
ke−q′c

s2†
−k2

+ cs1†
−k1+q′c

s2†
−k2−q′c

se†
ke
− cs2†
−k2+q′c

s1†
−k1−q′c

se†
ke
}∣0⟩

= ∑
k1 ,k2 ,q′
s1 ,s2 ,se

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kevq′{c

s1†
−k1

cs2†
−k2−q′c

se†
ke+q′ + cs1†

−k1−q′c
s2†
−k2

cse†
ke+q′ + cs1†

−k1−q′c
s2†
−k2+q′c

se†
ke
}∣0⟩.

(C4)

In order to move from the second to the third equality in (C4),
we have made use of the substitutions q′ → −q′ in the first, third,
and fifth terms. The last term is a self-interaction exchange of
momentum q′ between the two electrons on the trion.

With the self-interaction terms removed, and ignoring hole
operators, the operation of V = Veh + Vee acting on the trion–
electron scattering state is

V ∣kt,ke⟩ = ∑
k1 ,k2 ,q′
s1 ,s2 ,se

ξ∗S (s1, s2)Φ∗αtkt+k1 ,αtkt+k2ψ
∗
kevq′

×{cs1†
−k1−q′c

s2†
−k2

+ cs1†
−k1

cs2†
−k2−q′ − c

s1†
−k1
(z1)cs2†

−k2
}cse†

ke+q′ ∣0⟩.

(C5)

The trion–electron elastic scattering matrix elements are given
by the action of ⟨kt + q,ke − q∣ on (C5). Executing all possible inte-
grals analytically produces a series of terms that can be broken into
a direct component and two exchange components. We first adopt
some notation: λ̃ = λ1λ2/(λ1 + λ2), is a harmonic-mean-like term
that arises during convolutions, e.g., in (B9), and Δkt = ke − αtkt,

where kt is the initial trion momentum and αt = me/Mt is the ratio
of the effective electron mass to that of the trions Mt = 2me + mh.
Finally, the elastic scattering matrix elements, V(q,ke,kt), are given
by the sum of (C6) and (C8). The direct terms are

VD
(q) =

2πe2

qε(q)A(1 + κ2)

5

∑
j=1

gj(q), (C6)

where
g1(q) = g(λ1αtq/2)g(λ2βtq/2),

g2(q) = g(λ2αtq/2)g(λ1βtq/2),

g3(q) = 2κ2g(̃λαtq)g(̃λβtq),

g4(q) = −g(λ1αtq/2)g(λ2αtq/2),

g5(q) = −κ2g2
(̃λαtq)

(C7)

and the exchange terms are

VXC
(q,ke,kt) =

2e2

A(1 + κ2)
∫

d2k′

k′ε(k′)

6

∑
j=1
[Gj(q,k′; λ1, λ2) + Gj(q,k′; λ2, λ1)], (C8)
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where
G1(q,k′; λ1, λ2) = λ2

2g(λ1αtq/2)g(λ2∣Δkt − q∣)g(λ2∣αtq − Δkt + k′∣),

G2(q,k′; λ1, λ2) = −λ2
2g(λ2∣αtq − Δkt + k′∣)g(λ1∣αtq − k′∣/2)g(λ2∣Δkt − q∣),

G3(q,k′; λ1, λ2) = −λ2
2g(λ1αtq/2)g(λ2∣q − Δkt + k′∣)g(λ2∣αtq − Δkt + k′∣),

G4(q,k′; λ1, λ2) = κλ1λ2g(̃λαtq)g(λ1∣αtq − Δkt + k′∣)g(λ2∣Δkt − q∣),

G5(q,k′; λ1, λ2) = −κλ1λ2g(λ1∣αtq − Δkt + k′∣)g(̃λ∣αtq − k′∣)g(λ2∣Δkt − q∣),

G6(q,k′; λ1, λ2) = −κλ1λ2g(̃λαtq)g(λ2∣q − Δkt + k′∣)g(λ1∣αtq − Δkt + k′∣).

(C9)

Applying ⟨kt + q,ke − q∣ on (C5) produces a series of integrals,
many of which may be evaluated analytically. In addition, the signs,
and in some cases the prefactor, of the various terms are determined
by summing over the spin degrees of freedom.

As in previous calculations, it is helpful to evaluate the contrac-
tion of Fermionic operators

⟨0∣c1c2c3c†4c
†
5c

†
6 ∣0⟩ = δ16(δ34δ25 − δ24δ35) + δ15(δ24δ36 − δ34δ26)

+ δ14(δ35δ26 − δ25δ36), (C10)

where for the electron–hole interaction,

1 ≡ (ke − q, s′e),

2 ≡ (−k′2, s′2),

3 ≡ (−k′1, s′1),

4 ≡ (−k1, s1),

5 ≡ (−k2, s2),

6 ≡ (ke + q′, se).

(C11)

As an example, the terms including δ16 produce g4(q) and g5(q) in
(C7), and the remainder of the exchange terms correspond to G1 and
G4 in (C9).

To evaluate the first (second) electron–electron interactions, we
replace k1 → k1 + q′ (k2 → k2 + q′) in (C11). Each of the six terms
generated by the contraction in (C10) is evaluated individually for
the hole and two electrons, generating 18 total terms and producing
(C7) and (C9). Note that g3(q) in (C7) accounts for two identical
electron–electron interaction terms.

Instead of presenting a derivation of all 18 terms, we present
a detailed derivation of one of them. The others follow similarly.
Consider the electron–hole term corresponding to δ24δ15δ36,

−
1
2 ∑

k1 ,k2 ,k′1 ,k′2 ,q′

s1 ,s2 ,se ,s′1 ,s′2 ,s′e

vq′ξ∗S (s1, s2)ξS(s′1, s′2)ψ
∗
keψke−q

×Φ∗αtkt+k1 ,αtkt+k2Φαt(kt+q)+k′1 ,αt(kt+q)+k′2

× δk′2 ,k1δs′2 ,s1δke−q,−k2δs′e ,s2δ−k′1 ,ke+q′δs′1 ,se . (C12)

Note that the factor of 1/2 is due to an average over the initial
free-electron spin states. We may sum over the dummy variables
s′1, s′2, s′e,k′2, k2 and q′. This yields

−
1
2 ∑k1 ,k′1

s1 ,s2 ,se

vke+k′1ξ
∗
S (s1, s2)ξS(se, s1)ψ∗keψke−q

×Φ∗αtkt+k1 ,αtkt+q−keΦαt(kt+q)+k′1 ,αt(kt+q)+k1 . (C13)

The spin factors are evaluated first,

∑
s1 ,s2 ,se

ξ∗S (s1, s2)ξS(se, s1) =

⎧⎪⎪
⎨
⎪⎪⎩

−1 if s2 = se

0 if s2 ≠ se.
(C14)

After sorting each term in (C13) by an integration variable and mak-
ing the substitutions k′1 → k′1 −ke and k1 → k1 − αtkt, one integral
may be evaluated analytically using the convolution in (B9), yielding
G4(q, k′; λ1, λ2) after the substitution Δkt = ke − αtkt is made.

APPENDIX D: COMPUTATIONAL DETAILS
All integrations were performed using the Cubature adaptive

integration package.72 Integrals over (0, ∞) were mapped to the
finite range (0, 1) and performed using adaptive integration. Addi-
tionally, in order to avoid exhausting available memory, integrals
were nested in the following way: First, scattering matrix elements
were computed on the fly and converged to some relative error tol-
erance ϵ. This results in a computation of a 2D integral for the
exchange terms. Once the matrix element V is computed, the golden
rule integration that contains |V|2, along with the integration over
all final states, is performed (this is a three-dimensional integral)
and converged to some error tolerance cϵ, where c is typically on
the order of 100–1000. Finally, to ensure convergence, the entire
computation is converged with respect to the decrease in ϵ.
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