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Simulations of excited state properties, such as spectral functions, are often computationally expensive
and therefore not suitable for high-throughput modeling. As a proof of principle, we demonstrate that
graph-based neural networks can be used to predict the x-ray absorption near-edge structure spectra of
molecules to quantitative accuracy. Specifically, the predicted spectra reproduce nearly all prominent
peaks, with 90% of the predicted peak locations within 1 eVof the ground truth. Besides its own utility in
spectral analysis and structure inference, our method can be combined with structure search algorithms to
enable high-throughput spectrum sampling of the vast material configuration space, which opens up new
pathways to material design and discovery.
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The past decade has witnessed exploding developments
in artificial intelligence, specifically deep learning appli-
cations, in many areas of our society [1], including image
and speech recognition, language translation, and drug
discovery, just to name a few. In scientific research, deep
learning methods allow researchers to establish rigorous,
highly nonlinear relations in high-dimensional data. This
enormous potential has been demonstrated in, e.g., solid
state physic and materials science [2,3], including the
prediction of molecular [4,5] and crystal [6] properties,
infrared [7] and optical excitations [8], phase transitions [9]
and topological ordering [10] in model systems, in silico
materials design [11], and force-field development [12,13].
One high-impact area of machine learning (ML) appli-

cations is predicting material properties. By leveraging
large amounts of labeled data consisting of feature-target
pairs, ML models, such as deep neural networks, are
trained to map features to targets. The ML parameters
are optimized by minimizing an objective loss criterion and
yield a locally optimal interpolating function [14]. Trained
ML models can make accurate predictions on unknown
materials almost instantaneously, giving this approach a
huge advantage in terms of fidelity and efficiency in
sampling the vast materials space as compared to experi-
ment and conventional simulation methods. So far, existing
ML predictions mostly focus on simple quantities, such as
the total energy, fundamental band gap, and forces; it
remains unclear whether ML models can predict complex
quantities directly, such as spectral functions of real
materials, with high accuracy. Establishing such capability
is, in fact, essential to both the physical understanding of
fundamental processes and design of new materials. In this
study, we demonstrate that ML models can predict x-ray

absorption spectra of molecules with quantitative accuracy,
capturing key spectral features, such as locations and
intensities of prominent peaks.
X-ray absorption spectroscopy is a robust, element-

specific characterization technique widely used to probe
the structural and electronic properties of materials [15]. It
measures the intensity loss of incident light through the
sample caused by core electron excitations to unoccupied
states [16]. In particular, the x-ray absorption near-edge
structure (XANES) encodes key information about the
local chemical environment (LCE), e.g., the charge state,
coordination number, and local symmetry, of the absorbing
sites [16–18]. Consequently, XANES is a premier method
for studying structural changes, charge transfer, and charge
and magnetic ordering in condensed matter physics, chem-
istry, and materials science.
To interpret XANES spectra, two classes of problems

need to be addressed. In a forward problem, one simulates
XANES spectra from given atomic arrangements using
electronic structure theory [16,19–24]. In an inverse prob-
lem, one infers key LCE characteristics from XANES
spectra [25–27]. While the solution of the forward problem
is limited by the accuracy of the theory and computational
expense, it is generally more complicated to solve the
inverse problem, which often suffers from a lack of
information and can be ill posed [28]. Standard approaches
typically rely on either empirical fingerprints from exper-
imental references of known crystal structures or verifying
hypothetical models using forward simulation [29,30].
When using these standard approaches, major challenges

arise from material complexity associated with chemical
composition (e.g., alloys and doped materials) and structure
(e.g., surfaces, interfaces, and defects), which makes it
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impractical to find corresponding reference systems from
experiments and incurs a high computational cost of
simulating a large number of possible configurations, with
hundreds or even thousands of atoms in a single unit cell.
Furthermore, emerging high-throughput XANES capabil-
ities [31] poses new challenges for fast, even on-the-fly,
solutions of the inverse problem to provide time-resolved
materials characteristics for in situ and operando studies.
As a result, a highly accurate, high-throughput XANES
simulation method could play a crucial role in tackling both
forward and inverse problems, as it provides a practical
means to navigate the material space in order to unravel the
structure-spectrum relationship. When combined with
high-throughput structure sampling methods, ML-based
XANES models can be used for the fast screening of
relevant structures.
Recently, multiple efforts have been made to incorporate

data science tools in x-ray spectroscopy. Exemplary studies
include database infrastructure development (e.g., the
computational XANES database in the Materials Project
[32–35]), building computational spectral fingerprints [36],
screening local structural motifs [37], and predicting LCE
attributes in nanoclusters [25] and crystals [26,27] from
XANES spectra using ML models. However, predicting
XANES spectra directly from molecular structures using
ML models has, to the best of our knowledge, not yet been
attempted.
As a proof of concept, we show that a graph-based deep

learning architecture, a message-passing neural network
(MPNN) [38], can predict XANES spectra of molecules
from their molecular structures to quantitative accuracy.
Our training sets consist of O and N K-edge XANES
spectra (simulated using the FEFF9 code [39]) of molecules
in the QM9 molecular database [40], which contains
∼134000 small molecules with up to nine heavy atoms
(C, N, O, and F) each. The structures were optimized using
density functional theory with the same functional and
numerical convergence criteria. This procedure, together
with the atom restriction of the QM9 database, ensures a
consistent level of complexity from which a ML database
can be constructed and tested. Although our model is
trained on computationally inexpensive FEFF data, it is
straightforward to generalize this method to XANES
spectra simulated at different levels of theory.
The MPNN inputs (feature space) are derived from a

subset of molecular structures in the QM9 database,
henceforth referred to as the molecular structure space,
M. Two separate databases are constructed by choosing
molecules containing at least one O (MO, nO ≈ 113000) or
at least one N atom (MN, nN ≈ 81000) each; note that
MO ∩ MN ≠ ∅, as many molecules contain both O and N
atoms. The molecular geometry and chemical properties of
each molecule are mapped to a graph (MA → GA,
A ∈ fO;Ng) by associating atoms with graph nodes and
bonds with graph edges. Following Ref. [38], each gi ∈ GA

(i the index of the molecule) consists of an adjacency
matrix that completely characterizes the graph connectivity,
a list of atom features (absorber, atom type, donor or
acceptor status, and hybridization), and a list of bond
features (bond type and length). A new feature, the
“absorber”, is introduced to distinguish the absorbing sites
from the rest of the nodes. Each graph-embedded molecule
in GA corresponds to a K-edge XANES spectrum in the
spectrum or target space, SA ∈ RnA×80, which is the
average of the site-specific spectra of all absorbing atoms,
A, in that molecule, spline interpolated onto a grid of 80
discretized points and scaled to a maximum intensity of 1.
For each database DA ¼ ðGA; SAÞ, the data are partitioned
into training, validation, and testing splits. The latter two
contain 500 data points each, with the remainder used for
training. The MPNN model is optimized using the mean
absolute error (MAE) loss function between the prediction
ŷi ¼ MPNNðgiÞ and ground truth yi ∈ SA spectra. During
training, the MPNN learns effective atomic properties,
encoded in hidden state vectors at every atom, and passes
information through bonds via learned messages. The
output computed from the hidden state vectors is the
XANES spectrum discretized on the energy grid as a
length-80 vector. Additional details regarding the graph
embedding procedure, general implementation [41–43],
and MPNN operation can be found in Ref. [38] and in
Supplemental Material [44].
Prior to the training, we systematically examine the

distribution of the data. Following common chemical
intuition, the data are labeled according to the functional
group that the absorbing atom belongs to. In order to
efficiently deconvolute contributions from different func-
tional groups, we present only results on molecules with a
single absorbing atom each; this subset is denoted as
D0

A ¼ ðG0
A; S

0
AÞ ⊂ DA, and the distribution of common

functional groups in D0
A are shown in Fig. 1, where the

most abundant compounds are ethers and alcohols in D0
O

FIG. 1. Left: 100 oxygen (top) and nitrogen (bottom) random
sample spectra from each functional group in S0A; the averages
over all spectra in each functional group are shown in bold.
Right: The distribution of functional groups in D0

A.
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and tertiary (III°) and secondary (II°) amines in D0
N. From

the averaged spectra (bold lines) in Fig. 1, distinct spectral
contrast (e.g., number of prominent peaks, peak locations,
and heights) can be identified between different functional
groups. In fact, several trends in the FEFF spectra qualita-
tively agree with the experiment, such as the sharp pre-edge
present in ketones (black) but absent in alcohols (red) [45]
and the general two-peak feature of primary (I°) amines
(blue) [46].
Although XANES is known as a local probe that is

sensitive to the LCE of absorbing atoms, a systematic study
of the degree of such correlation on a large database has not
yet been performed. To investigate this structure-spectrum
correlation, we perform principal component analysis
(PCA) [47] on both the features and targets in DA and
visually examine the clustering patterns after the data inD0

A
are labeled by different chemical descriptors. To provide a
baseline, we consider the total number of nonhydrogenic
bonds in the molecule (NB), which is a generic, global
property, supposedly having little relevance to the XANES
spectra. Next, we consider two LCE attributes: the total
number of atoms bonded to the absorbing atom (NA) and
the functional group of the absorbing atom (FG). While
spectra on a discrete grid can be processed directly,
molecular structures, with different numbers of atoms
and connectivity, need to be preprocessed into a common
numerical representation before PCA. Thus, the molecular
fingerprint of each molecule in MA is calculated from its
SMILES code using the RDKit library [48]. Then an arbi-
trarily large subset of 104 molecules, M̃A ⊂ MA, is
randomly selected to construct a molecular similarity
matrix of Tanimoto correlation coefficients (TCCs) [49],
TA ∈ ½0; 1�NA×104 , from the molecular fingerprints such that
TA;ij ¼ TCCðmi;mjÞ, where mi ∈ MA and mj ∈ M̃A.
TCCðmi;miÞ ¼ 1 defines perfect similarity. The TA matrix
therefore provides a uniform measure of structural sim-
ilarity of every molecule in MA to each one of the 104

references, serving as a memory-efficient proxy to MA.
Results of the PCA dimensionality reduction are pre-

sented for both datasets and all three descriptor labels (NB,
NA, and FG) in Fig. 2. Specifically, after PCA is performed
on unlabeled data, the data are colored in by their respective
labels. While some degree of structure is manifest in NB, it
is clear that the overall clustering is much inferior to both
NA and FG, confirming that NB is largely irrelevant to
XANES. On the other hand, both NA and FG exhibit
significant clustering, with the latter, as expected, slightly
more resolved; while NA can distinguish only up to two
(three) bonds in the O (N) datasets, FGs reveal more
structural details of the LCE and encode more precise
information, such as atom and bond types. For NA and FG,
clustering in the TCC space is more difficult to resolve, as it
is only a coarse-grained description of the molecule,
missing detailed information about, e.g., molecular geom-
etry, which will be captured by the MPNN. Despite this,

visual inspection reveals significant structure, such as in
Fig. 2(c), where alcohols (red), ethers (blue), and amides
(cyan) appear well separated.
Spectra PCA of FG in Figs. 2(f) and 2(l) can also be

directly correlated with the sample spectra in Fig. 1. For
instance, the shift in the main peak position between
ketones, aldehydes, and amides (black, purple, and cyan,
respectively) and alcohols and ethers (red and blue,
respectively) in S0O reflects the impact of a double versus
a single bond on the XANES spectra. As a result, groups of
these structurally different compounds are well separated in
the spectra PCA as shown in Fig. 2(f); even compounds
with moderate spectral contrast, e.g., between alcohols
(red) and ethers (blue), are well separated. Similar trends
are observed in S0N, where, e.g., nitrile groups (black) show
a distinct feature around 425 eV, which clearly distin-
guishes itself from the other FGs, and, likely because of
that, one observes a distinct black cluster in Fig. 2(l).
The PCA suggests that the FG is a key descriptor of

XANES. As the MPNN can fully capture the distinction
of FGs through node features, edge features, and the

FIG. 2. PCA plots for both the TCC [(a)–(c) and (g)–(i)] and
spectra [(d)–(f) and (j)–(l)] proxies for the molecules in D0

A
labeled by NB, NA, and FG. The total number of nonhydrogenic
bonds (NB, top) ranges from 1 (violet) to 13 (red). The total
number of atoms bonded to the absorbing atom (NA, center)
takes on one of three values: 1, 2, or 3 (black, red, and blue,
respectively). The color legends for the functional group of the
absorbing atom (FG, bottom) are the same as in Fig. 1.
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connectivity matrix, we expect that an MPNN can learn
XANES spectra of molecules effectively. Randomly
selected testing set results from the trained MPNN for
both DO and DN are presented in Fig. 3 and ordered
according to MAE, with the best decile at the top and worst
decile at the bottom. It is worth noting that MPNN
predictions not only reproduce the overall shape of the
spectra, but, more importantly, predict peak locations and
heights accurately. In the best decile, the MPNN predic-
tions and ground truth spectra are nearly indistinguishable.
Even in the worst decile, the main spectral features (e.g.,
three peaks between 530 and 550 eV in the oxygen K edge
and two peaks between 400 and 410 eV in the nitrogen K
edge) are correctly reproduced with satisfactory relative
peak heights.
As shown in Table I, the MAE of the prediction is 0.023

(0.024) for the oxygen (nitrogen) test set, which is an order
of magnitude smaller than the spectral variation defined by
the mean absolute deviation of the oxygen (0.131) and
nitrogen (0.123) test sets. To provide an additional quanti-
fication of the model’s accuracy, we select prominent
peaks, defined by those with height above half the

maximum height of the spectrum and separated by a
minimum 12 grid points (≈6 eV) in energy. We find that
the number of prominent peaks in 95% (90%) of predicted
spectra corresponds with that of the ground truth for the
oxygen (nitrogen) testing set. Peak locations and heights
are predicted with an average absolute difference of ΔE ¼
0.49 (0.48) eV and Δμ ¼ 0.045 (0.041), respectively (see
Table I). The predicted peak heights display a very narrow
distribution around Δμ ¼ 0, as the total population in the
tail region with Δμ > 0.1 is only 7% (see Fig. 3, bottom).
As shown in the insets, the vast majority (∼90%) of the
predicted peak locations fall within �1 eV of the ground
truth, with the coefficient of determination R2 ≥ 0.96. The
exceptional accuracy of the MPNN model results on
predicting both the peak location and intensity underscores
its predictive power and its ability to capture essential
spectral features.
It is also important to understand the robustness of the

network for practical applications; specifically, we examine
how distorting or removing certain features impacts the
model performance. To do so, we train separate MPNN
models using “contaminated” features, where either (i) the
bond length is randomized (RBL) or (ii) the atom type is
randomly chosen, and all other atomic features are removed
(RAF). In addition, we investigate the impact of the locality
in the MPNN prediction of XANES spectra of molecular
systems. By default, the MPNN operates on the graph
embedding of the whole molecule, referred to as the core
results. However, the significance of the FG as a sound
proxy for the XANES spectra (see Fig. 2) suggests that
local properties, such as the LCE, play a dominant role.
Therefore, spatially truncated graphs are likely to be
sufficient to predict the XANES spectra of molecules
accurately. To quantify this effect, we impose different
distance cutoffs (dc) from 2 to 6 Å around the absorbing
atoms and train separate ML models using spatially
truncated graphs.

FIG. 3. Performance metrics for the MPNN evaluated on the
DA testing sets. Top: Waterfall plots of sample spectra (labeled by
their SMILES codes) of ground truth (black) and predictions
(dashed red), where prominent peaks (see the text) are indicated
by triangles. One randomly selected sample from every decile is
sorted by MAE (first, best; last, worst). Bottom: Distribution of
the absolute error of predicted peak heights, Δμ; insets show the
comparison between the prediction and ground truth in peak
locations.

TABLE I. Performance metrics based on the MAE of the
spectra, ΔE, and Δμ.

A Data MAE ΔE (eV) Δμ

O Core 0.023(1) 0.52(4) 0.044(2)
RBL 0.031(1) 0.55(3) 0.051(2)
RAF 0.041(2) 0.63(3) 0.068(3)
dc ¼ 4 Å 0.023(1) 0.45(3) 0.040(2)
dc ¼ 3 Å 0.025(1) 0.48(3) 0.040(2)
dc ¼ 2 Å 0.095(4) 0.80(4) 0.179(6)

N Core 0.024(1) 0.47(3) 0.042(2)
RBL 0.029(1) 0.57(3) 0.049(2)
RAF 0.045(2) 0.70(4) 0.084(3)
dc ¼ 4 Å 0.023(1) 0.43(3) 0.039(2)
dc ¼ 3 Å 0.027(2) 0.47(3) 0.046(3)
dc ¼ 2 Å 0.056(4) 0.66(4) 0.099(5)
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Independent MPNN models were trained and tested on
each database corresponding to either RBL, RAF, and
different dc values. As shown in Table I, randomizing the
bond length feature does not affect the performance of
MPNN, as ΔE and Δμ in RBL only worsen slightly.
Atomic features have a larger impact than the bond length,
as ΔE and Δμ in RAF have a sizable increase from 0.52
(0.47) to 0.63 (0.70) eV and from 0.044 (0.042) to 0.068
(0.084) in DO (DN). In fact, despite the seemingly large
increase, ΔE is still well below 1 eV, i.e., falling within 1–2
grid points, resulting in only a marginal impact on its
practical utility. Percentagewise, the change in Δμ is
comparable to ΔE for RAF. If we consider the relative
peak intensity instead of the absolute peak intensity as
measured by Δμ, this difference becomes less significant.
The analysis above leads to a seemingly counterintuitive

conclusion that key XANES features can be obtained with
little knowledge about the atomic features and bond length,
especially if one considers the importance to know which
atoms are the absorption sites. It turns out that this is not
entirely surprising, since it has been shown that the distinct
chemical information of atoms can be extracted by ML
techniques from merely the chemical formula of the
compound [50]; i.e., specific atomic information can be
learned through its environment. In this case, the con-
nectivity matrix likely compensates for a lack of atom-
specific information and supplies enough knowledge about
the LCE to make accurate predictions. As for the effect of
the locality, we found that the results are statistically
indistinguishable from the core results when dc ≥ 4 Å
and breaks down at dc ≈ 2 Å, indicating that the MPNN
architecture requires at least the first two coordination
shells to make accurate predictions.
In summary, we show that the functional group carries

statistically significant information about the XANES
spectra of molecules and that, by using a graph-based
deep learning architecture, molecular XANES spectra can
be effectively learned and predicted to quantitative accu-
racy. With proper generalization, this method can be used to
provide a general-purpose, high-throughput capability for
predicting spectral information, which may not be limited
to XANES, of a broad range of materials including
molecules, crystals, and interfaces.
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